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PREFACE

The work described ia this report was performed by the

Guidance and Control Division of the Jet Propulsion Laboratory.
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ABSTRACT

This report treats two central topics related to the dynamical aspects of
the control problem of the six degrees of freedom JPL Robot Research Project
(RRP) manipulator: (a) variations in total inertia and gravity loads at the joint
outputs, and (b) relative importance of gravity and acceleration-generated reac-
tion torques or forces versus inertia torques or forces. The relation between
the dynamical state equations in explicit terms and servoing the manipulator is
briefly discussed in the framework of state .ariable feedback control which also

forms the basis of adaptive manipulator control.

Exact state equations have been determined for total inertia and gravity
loads at the joint outputs as a function of joint variables, using the constant
inertial and geometric parameters of the individual links defined in the respec-
tive link coordinate frames. The range of maximum variations in total inertia

and gravity loads at the joint outputs has been calculated for both no load and

load in the hand.

The main result of this report is the construction of a set of greatly sim-
plified state equations which describe total inertia and gravity load variations
at the output of the six joints with an average error of less than 5%. The sim-
plified state equations also show that most of the time the gravity terms are
more important than the inertia terms in the torque or force equations for joint
numbers 2, 3, 4, and 5. Further, the acceleration-generated reaction torques
or forces, except from extreme arm motion patterns, are shown to have very
low quantitative significance as compared to the straight inertial torques or
forces in the dynamic equations restricted to simultaneous motions at the first

three joints,

The results are summarized in four tables and nine figures. The report
also contains all analytic tools and byproducts needed to arrive at the outlined
conclusions. An important analytical byproduct is the simplification of the

general matrix algorithm for manipulator dynamics.
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I. INTRODUCTION

The purpose of control is to keep fixed or alter the dynamical behavior of
a physical system in accordance with man's wishes formulated in terms of per-
formance requirements and goals. The nature of the control problem com-
prises two distinct parts: (a) quantitative description of the dynamical
behavior of the physical system (in our case, the manipulator) fo be controlled
and (b) specification of a '"'scheme' or control law for carrying out the desired
controlled behavior (in our case, to accomplich a variety of manipulative tasks
with specified performance). This report is mainly about the former part of the

manipulator control problem:

Modeling and evaluating the dynamical properties and
behavior of the JPL Robot Research Project (RRP)

manipulator,

The fundamental idea of control is that the inputs should be computed
from the state. Of course, this idea is known as feedback, Thus, the natural
frarnework for formulating and solving control problems is the state description
of the physical system. The state incorporates all information necessary to
determine the control action to be taken since, by definition of a dynamical
system, the future evolution of the system is completely determined by its
present state and the future inputs. The relation between explicit state equa-

tions for manipulator dynamics and servoing the inanipulator is briefly treated

R R TR s o st

in Section II,

The actual dynamical model for the six degrees of freedom JPL RRP
manipulator can be obtained from kncwn physical laws (from the laws of the
Newtonian mechanics) and from physical measurements. This task amounts
to the derelopment of the equations of motion for the six manipulator joints
in terms of specified (measured) geométric and inertial parameters of the
links. JConventional procedures could then be applied to develop the actual
motion equations. instead of using conventional procedures. the equations of
motion in this report are developed through the application ©f a general
algorithmic description of manipulator dynamics. The algorithim is based
on a specific representation of link coordinate frames in jointed mechanisms

APTIRTY M i “—
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and the formalism of the Lagrangian mechanics, The features of the genc¢ral
algorithm together with the definitions of the involved functional symbols and
mathematical operations are described in Section I11I. Section III also provides
a general specification of the six equations of motion for the JPL RRP manipu-
lator as well as a condensed physical explanation of the different terms
appearing in the equations, Section IIl concludes with a compact vector/matrix

description of the six motion equations,

The complete dynamical model of the JPL RRP manipulator is described
by a set of six coupled nonlinear differential equations. Each equation contains
a large number of torque or force terms classified into four groups: (a) inertial
torque or force, (b) reaction torques or forces generated by acceleration at
other joints, (c) velocity-generated (centripetal and Coriolis) reaction torques
or forces, and (d) gravity torque or force. With few exceptions, each torque
or force term depends on the instantaneous configuration (position) of several
links. To gain analytic insight into the dynamical behavior of the manipulator
in terms of explicit state equations while keeping the analysis manageable,
well-defined and useful dynamical model restrictions are identified in Sec-
tion IV, It is emphasized, however, that the model restrictions are introduced

only for analytic purposes.

In Section V explicit state equations are presented for inertial, gravity,
and acceleration-generated reaction torque/force terms for manipulator
motions rest-icted to the first three joints, The last three (wrist) joints are
thought to be temporally at rest in a known configuration, While in Section VI
complete (unrestricted) explicit state equations are presented for inertial and
gravity torques or forces acting at all six joint axes, The exact state equations
developed in Sections V and VI form one part of the important results of this

report.

Partial derivatives of the different link coordinate transformation
matrices as well as the pseudo inertia matrices (together with numerical
values of inertial components) utilized in the development of the explicit state
equations are compiled in Appendices A and B, Modifications of the explicit
and exact state equations for inertial and gravity terms when a load is
emplaced in the hand are treated in Appendix C.
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The concluding part of the report is Section VII organized in five
subsections. From the exact state equations and numerical va.¢+ ¢t ‘nertial

components of the JPL RRP manipulator the following conclu.:ng com). :ations

are made:

. Maximum and minimum values of total inertia seen at all six
joint axes are determined in subsection VII, A; the constant and
varying components of total inertias are separated out in the
computations,

[ Maximum gravity load variations seen at the different joint axes

are determined in subsection VII, B.

The maximum total inertia and gravity load variations huve been calcu-
lated for both no load and load in the hand, (The load is a 1,8 kg, 442 cm3
cube placed with its mass center at the origin of the hand coordinate frame.)
Utilizing the exact state equations restricted to simultaneous motions at the

first three manipulator joints,

° The relative importance of acceleration-generated reaction
torques/forces versus inertial torques forces is quantitatively

evaluated in subsection VII,C,
The main result of this report is

. The development of simplified state equations for total inertial
and gravity loads at all six joint axes, presented and evaluated

regarding accuracy in subsection VII. D,

Parameters dependent on a load in the hand are separated out in the

simplified state equations. Utilizing the simplified state equations,

° The relative importance of gravity load versus inertial load in
the torque/force equations is quantitatively evaluated in
subsection VII.E, normalized to unit acceleration.

It is shown that the gravity terms in most of the time of normal (not too
fast) arm operstion are more important than the inertial terms for joints
Nos. 2, 3, 4, and 5 in the gravity field of Earth,

JPL Technical Memorandum 33-669
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The development and evaluation of explicit state equations for total
inertial and gravity loads acting at the six arm joint axes form the basic
dynamical model for the JPL RRP manipulator under operating conditions
when acceleration- and velocity-generated reaction torques or forces can be
neglected. The relative significance of the different reaction terms in the
complete torque/force equations for fast ar.n movemerts wil! be evaluated in
a separate report after the determination of explicit state equations for all

existing reaction torques and forces,

General simplification of the algorithmic definitions for all dynamic
coefficients of any manipulator is introduced and mathematically justified in

Appendix D at the end of the report.
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II. DYNAMICAL MODEL AND CONTROL SYSTEM DESIGN

The RRP manipulator under consideration is a coupled electromechanical
system. The inputs to the system (with which contrcl is accomplished) are
torque generated by motors driving the joints, The outputs are joint position
and motor shaft velocity measurements, This input/output description forms
the definition of the manipulator as a dynamical system, To make this dynami-
cal system definition (or dynamical model) quantitative, mathematical relations
are required which relate input to output. The mathematical relation between
input (torque) and output (position and velocity) is obtained by the specification

of state equations (differential equations) goverring the manipulator motion,

The execution of purposeful manipula’’re tasks requires two types of

e -

performance from the viewpoint of servo control: (1) positioning the manipulator,

and (2) exerting torques or forces on objects through the manipulator. Manipu-

ORI e Wt o g

lator positioning is a task of controlling the relative displacement of several

. links connected by single degree of freedom joints, The positioning control

o T i e

problem can be subdivided into two classes: (a) point-to-point control, and
v (b) continuous path control., In point-to-point control mode only the final

(terminal) joint variable values are specified as '"desired output'. While

N _ in continuous path control mode the ''desired output' is a closed time history

(time sequence) of joint variable values. The strict space-time coordination

of several joint variable values defines a continuous path for manipulator

motion in the work space,

The objective of closed loop (feedback) control is to reduce the effect
of external disturbances and system parameter changes on the desired system
output. In the case of position-servoing a manipulator, the notion "external
disturbances' can be used in a broad sense: they can include known effects
deliLerately neglected in the matliematical form of the dynamical model. (For
instance, neglected emall reaction torques or forces, neglected small link
mass center offsets, etc.) There is, however, a limit on the range of changes
in system parameters and disturbances which can be tolerated without deterior-
ation of desired servo performance. In general, the acceptable varviation
in system parameters can be extended by readjusting (varyiug) feedback gains.

JPL Technical Memorandum 33-669
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In particular, for a critically damped position servo using velocity feedback,

an essential system parameter is the total effective inertia Ji: if J¢ is decreased

by a factor ''n'" relative to a nominal value the damping and natural frequency
are both increased by a factor «/n; but reduction of the velocity feedback con-
stant to -/n to its original (nominal) value will restore critical damping. (See,
for instance, Refs, 1, 2, 3.) Manipulator motion iu general and lcad handling
in particular imply cunsiderable variations in total effective inertia J; as seen
at the different joint drives. Therefore, to maintain a required servo perfor-
mance despite variations in J¢, Jy must be known explicitly as a function of joint

variables (or implicitly as a function of time for a given motion program).

A strict continuous path control requires a uniform servo performance.
Thus, it is important to obtain an appropriate state descr.ption for total
effective inertia variations as seen at the different joint drives. One outcome
of the manipulator dynamic model analysis contained in this report is the
specification of state functi-ns for variations in total effective inertias, with

or without load in the hand,

The gravity load acting at the different joint drives during arm motion
is an important dynamic factor in commanding torques to obtain a desired
manipulator position output in a continuous path control mode. Another out-

come of the manipulator dynamic model analyvsis of this report is the specifica-

~ s gt hanen

tion of state functions for variations in gravity loads as s.en at the difierent :

joint drives during arm motion, with or without load in the hand.

The gpeed of arm motion can be interpreted both kinematically and dynam-

ically, The kinematic interpretation considers only the time required to P

move for instance the fingertip from one point to another in the workspace, c

while the dynamic interpretation of arm speed considers the torques or forces
acting at both the differeat joints and the fingertip during arm motion. A
useful dynamic definition for '"fast' or '"'slow' arm motion can be formulated
in terms of reaction torques or forces induced by the arm motion: the arm
motion is "slow' if the effect of induced reaction torques or forces can be
neglected in commanding torques to obtaindesired position outputs; if not,

then the motion is ''fast' in a dynamic sense, It is noted that an arm motion

JPL Technical Memoiandum 33-669
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can be '"'slow' in a dynamic sense but still be 'fast' in a kinematic sense,
Another outcome of manipulator dynamic model analysis is to contribute to
the establishment of the boundary between dynamically "slow' and '"fast' arm

motion with respect to control system performance.

Figure 1 shows schematically the RRP manipulator position servo control
under development, indicating also the relation of manipulator dynamical

model and servo design,
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III, GENERAL MODEL FOR MANIPULATOR DYNAMICS

The general equatiors of rnotion for jointed mechanisms (manipulators) can
conveniently be expressed through the application of the Lagrangian equations
for nonconservative systems (Ref, 4), Many investigators in the field of
cornputer-controlled manipulation in tne U,S, A, employ the Lagrangian tech-
nique to formulate the dynamic and control problem of manipulators, and apply
the Hartenberg-Denavit representation of coordinate frames in jointed mecha-
nisms to the definition of manipulator inertial parameters and dynamic variables
(Refs., 5, 6, 7 and 8), The application of the Lagrangian formalism together

‘ with the Hartenberg-Denavit link coordinate representation results in a conven-

ient and compact algorithmic description of the manipulator equations of motion,

The algorithm is expressed by matrix operations (Ref, 5), and facilitates both

-

j analysis and computer implementation. The evaluation of the dynamic and con-
i trol equations iu functionally explicit terms in this and subsequent memos will
i . E be based on the compact matrix algorithm developed in Ref., 5,
{ A. The General Dynamic Algorithm
¥
‘ P For clarity and easy reference, the general dynamic algorithm as applied to
":}.r,ﬁ - ¥ manipulators is repeated here together with the corresponding definitions. The
S :
’ associated manipulator coordinate system conventions and transformations

together with their application to the JPL RRP manipulator* should be consulted

whenever necessary.

The general algorithm which describes the manipulator equations of motion is

given by the following expression for the torque or force Fi acting at joint "i''s

i{i ['rm:e(UJk.rJuJi ]+ i [Tra.ce e Jl}qkq]

j=1{k=1 k=1 p=1

i=1' zo eeesy 0 (l)

where superscript T denotes the transpose of the matrix U ig and

*Lewis, R.A,, Bejczy, A.K., "RRP Manipulator Conventions, Coordinate
Systems, and Trajectory Considerations, ' JPL Guidance and Contvol
Technical Memo 343-174, 1 December 1972,
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F = torque or force acting at joint 'i" (that is, corresponding to the
joint variable qi),

q = '"joint variablei", i=1, ..., 5, .+..s Kk ...y Py ov.» n wWhere ''n"

denotes the degree-of-freedom (that is, the total number of joint

variables) of the manipulator,

i

qi, q1 velocity and acceleration, respectively, cf joint variable ''i'",

1" 143 1" "y . :
The '"building blocks m,, pj, G, Uji’ Ujkp’ and J'J of Eq. (1) are defined as

follows:
m; = the mass of body "j' in the chain of ''n" bodies (links).
Sj = mass center vector of body (link) "j'" in the coordinate system
fixed in the same body, given as a 4 x 1 vector with components
h
)
P & (2)
LI
z,
J
- l -l
G = acceleration of gravity, given as a 1 x 4 vector with components
G = [Gx, Gy» Gy o] (3)
Uj i = the first partial derivative of the T% transformation matrix with
J

respect to q,. Itis a 4 x 4 matrix, The transformation matrix T 0
is defined as

LN TJ:

i
T-T Jl)

1.2
0= ToT) jsn

which relatcs a point given in the "j" frame to the base reference

frame "'0",

10 JPL Technical Memorandum 32-669
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Since an individual transformation matrix T;—l depends only on

q; it is convenient to express the derivative of T;-l with respect
to q, through matrix operators Q. Thus, we have the following

expression for Uji:

/- ard
f L YU S L S
| Ui =g - ToT1 " 5g(Tin1) T |
.' § | 1 1
_ oplg2 i S .
t =TT e QT T ij  (4)

-t
MO s gy

where for a rotational joint variable q = Oi we have

K -1 0 0]
1 0 0 0 3
Q = Qe = (5) .
i 0 0 0 0
0 0 0 0]
and for a linear joint variable q = r; we have
[0 0 0 0]
0 0 0 0 i
Q = Qr = (6)
i Jo 0 0 1 )
| 0 0 0 0]
Ujk o = the second partial derivative of the T-L transformation matrix with
respect to q; and qp. Itis a 4 x 4 matrix, Using the notations
defined above, we have the following expression for U jkp‘
2.0)
T
- 0 - 1 L) 8 ‘ k L2 N a— p LN j
Uike * a8 % " Ty b‘a;('rk-l) aqp(T )T

l..’ k L p L I
Tgee+ QTy oo+ QTD | oov Ty | (n

JPL Technical Memorandum 33-669 11




It is noted that for k = p the second partial

with k, p = j.
derivative matrix operator for a linear joint variable T is zero,
Q =0 (8)
Tk
while for a revolute joint variable Bk we have
-1 0 0 0]
0 -1 0 0
Q = (9)
8% | o 0 0 0
| O 0 0 0]
J'j - 4 x 4 "inertia matrix" (we will call it ""pseudo inertia matrix'') for
body (link) "j'"" defined as follows:
1/ .2 2 2 2 2 =]
z('kju +kj22+kj33) k12 k13 X5
2 1(,2 2 2 2 —
k2 Z(kjll -~k ? kj33) ki23 Y;
J.=m 10
! ‘ 2 2 1(,2 2 2 o
K3 k23 E(kju*kaz’kjas) z
X, Y Z, 1
| j Y %] )
where

k =

12

x5 ¥y Ej are defined by Eq. (2), and

radius of gyration "ip" (i, p = L, 2, 3) of body (link)
"j" about the origin of the coordinate frame fixed in
the same body (link)., The radius of gyration is

JPL Technical Memorandum 33-669
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defined by the corresponding member of the inertia

tensor I.., as
Jip i

2 hip f
g L (11) !
jip m,
J !
where the i, p = 1, 2, 3 indices, respectively, rep-
resent the x, y, z axes of the Cartesian coordinate

frame fixed in body 'j",

As seen in Eq, (10), the ‘Tj ""pseudo inertia matrix' is symmetric,
It is constructed from the mass center vector Pj and the elements
of the inertia tensor Ij of body (link) "'j''. It is noted that the diag-
onal terms of the upper left 3 x 3 partition of the J, ""pseudo inertia
matrix'' are only related to the diagonal terms of the correspond-
ing true inertia matrix Ij’ but the diagonal “erms of the ''pseudo

and true inertia matrices are not identical,

For an ''n' degrees-of-freedom m nipulator, Eq. (1) gives a coupled set of ''n"
nonlinear second-order differentiai equations which constitute the complete

dynamic model for manipulators,

JPL Technical Memorandum 33-669 : 13
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B. Dynamic Equations for the JPL RRP Manipulator
Expanded 1in General Terms

If the algorithm given by Eq. (1) is expanded in general terms for the JPL. RRP
si>: degrees-of-freedom man.pulator, the following equations of motions are

obtained: '

D181 + Dy8, + Dy3¥5 + D)8, + D6, + D)6
.2 2 2 .2 2 .2
*D)1191 * Dyp®; t D33ty + D04 + Dyggbs + D6

+D)1,6,8, + D) 38,73+ D)) ,8,6,+D;,:8,6;+D 686

+ Dy238,T3 +D)548,94 %+ 91550,65 + D5.6,6,

* Dy34F38y * D 357385+ Dyy 748,

+ D1459495 + D146e4e6 + D1569566 + Dl = Tl (12)

Dy,8) + Dy,8, + Dyy¥y + Dy 6, + D, 8 + Dy 8,

.2 .2 .2 2 .2
287 + Dy33fy + Dy 04 + Dy 6 + D, 8y

+D é%+D

211 22

+Dy)2818, + Dy 483+ Dy, ,8,8, - D, 0,8, +D,,.8 68
+ Dpp305T3 + Dppy8,8, + Dyre,0, + Dy000,0,
+ Dy34T38y + Da3s¥rafs + Dyg e 380

TIn the subsequent equations 8; and 8; denote, respectively, the angular velocity
and acceleration of the revolute joint variables 8; belonging to joints 1, 2, 4,
5, 6, while f3 and 3 denote, respectively, the acceleration and velocity of the
linear displacement joint variable r3 belonging to the linear joint (joint #3),
See also Figure 2 later in the text.
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D;38, + Dy38, + D3y + Dy 0, + Dyg8y + Dy

22 22

.2 2 2 2
+ Dy, 8] + D3pp85 + Dygghy + Dyyy®y + Dygbs + Dyg by

+ Dy,8,0, + D3 30 73 + D3, ,8,8, + Dy 58,05+ Dj,.8,8,

+ Dyyq0,7s + Dy 0,8, + Dasyg0,85 + D3j08,8,

+ Dy T38, + DaygTa05 + D3gerafy

+ Dy 50,0, + Dy 8,8, + Dy 8.8, + Dy = Fy

D, 48, + Dy 8, + Dy Ty + Dy, + Dycls+ Dby

.2 2 .2 .2 .2 .2
+ Dy 87 + Dypyby + Dyaaiy + Dy g8y + DysgBs + Dyge e

+Dy,,8,6, + Dy 28,734 Dy 0,8, +Dy,50,0;+0D,,,68,

+ Dyyq0,F5 + Dyy 8,0, +Dyy50,05 +Dyyp 8,8,
+ D738, + DyggTafg + DygeTa8y

=T

+ Dyg59495 + Dyg 848 + DyseO58 + Dy = Ty

JPL Technical Memorandum 33-669
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D 59 + Dzse2 + D35 3+ D, 6 + D559 + 05696

82 + D, ..6% + X

2 .2 .2
D51191 * D529, + D333 +

D; 4494 + D553 + Dy B¢

+ Dy 158,68, + Dg 48,73 + D) 8,6, + D) 66,4+ Dy 66

+ Dgyabyfy + Dy 8,8, + Dy 8,8, + D, 8,6,

r,8,+D

Dyy4F384 + DgygFsb

5 * Dg3eT38

D5458495 + D54664e6 + D5569566 + D5 2 TS (16)

D, é +D69 + D, é +D46e +D5695+D6666

= 2 a2 .2 2 2, .2
+ Dy 87 + Dy2p8s + Dyggky + Dy 84 + Doz + Dy 6

L e e s o i

8.6, +D

8,8, + D 38,7, + Dy 48,6, + D\ .8,

5 De12%) 8,85+ Dy 86

8,6 8,6, + D

a3 + Dgpy8,8, + Dyyg8,8, + Dy 8,6,

e | + Dozt

é

+ Dggaf3by + Dyggialy + Dyqgiaby

The coefficients Di’ Dij and Dijp in Eqs. (12) to (17) are functicns of both the
joint variables and inertial parameters of the manipulator, and can be called
""the dynamic coefficients of the manipulator'’., The physical meaning and func-
tional relation of the th. ze classes of dynamic coefficients can easily be seen
from the defining algorithmic expression given by Eq. (1):

(1) The coefficients Di (single subscript) are the gravity terms, func-
tionally defined by the last term in the left hand side of Eq. (1).
(Obviously, in zero gravity field the D, coefficients are zero.)

16 JPL Technical Memorandum 33-669
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(2) The coefficients Dij (double subscript) are related to the acceleration
of the joint variables; they are functionally defined by the first term in
the left hand side of Eq. (1), In particular, fori =j, Dii is related to
the acceleration of joint '"i'' where the driving torque 'I‘i (or force Fi)
acts, while fori £ j Di' is related to the reaction torque (or force)
induced by the acceleration of joint "j'" and acting at joint "i'', or vice
versa, (It is seen from Eqs. (12) to (17) that Dij = Dji')

(3) The coefficients Dijp (triple subscript) are related to the velocity of the
joint variables; they are functionally defined by the second term in the
left hand side of Eq. (1). The last two indices (jp) arc related to the
velocities of joint variables '"j" and '"'p'' whose dynamic interplay
induces a reaction torque (or force) at joint "'i'', Thus, the first index
(i) is always related to the joint where the velocity-induced reaction

ijj is related

to the centripetal force generated by the angular velocity of joint ''j'"

and "felt" at joint "i", while for j # p Dijp is related to the Coriolis
force generated by the velocities of joints "j'' and "p' and ''felt' at
joint 'i"", It is noted that for a given "i'' we have Dijp = Dipj which is

torques (or forces) are ''felt', In particular, for j=p, D

apparent by physical reasoning.T

As seen, Eqs, (12) to (17) are six coupled, nonlinear, second-order differential
equations describing the dynamic behavior of the JPL RRP manipulator., For a
given set of applied torques '1Ii‘i (i=1, 2, 4, 5, 6) and force F3 as a function of
time, Eqs. (12) to (17) should be integrated simultaneously to obtain the actnal
motion of the manipulator in terms of the time history of the joint variables 6 1’
8,, Ty 84. 05. 8. Then the time history of the joint variables can be trans-
formed to obtain the time history (trajectory) of the hand motion by using the
appropriate transformation matrix described in the footnote on page 9. Or,

if the time history of the joint variables (together with the time history of their

TThe symmetry of the two dynamic coefficients, Djj = Djj and Djjp = Djp; can
easily be seen from the defining equation, Eq, (1), by noting tha?

T T .
Trace (ABC ") = Trace (CBA ") and Ujkp = Ujpk

where B is a symmetric matrix, while A and C can be two general (non-
symmetric) square matrices.

JPL Technical Memorandum 33-669
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acceleration and velocity) is known ahead of time (for instance, from a
trajectory planning program, see Refs, 1, 2 and 3),then Eqs. (12) to (17) can
be utilized to compute the torques (Ti’ i=1, 2, 4, 5, 6) and force F3 as a
function of time which are required to produce the particular planned (or known)
manipulator motion. The Stanford manipulator control scheme (Ref. 7) utilizes

the latter procedure.

In order to precompute torques and forces for a given manipulator motion, or
to obtain the actual manipulator motion for given torques and forces (or, in
general, to perform manipulator dynamic behavior and control system anaiysis
and design), Eqs, (12) to (17) as stated cannot be usea without knowing the
explicit functional form (or, alternatively, the time history) of the dynamic
coefficients Di' D.., Di' . Eqs. (12) to (17) in the stated form, however, bring

ij° Tijp
out an important point: in the case of simultaneous motion of several joints, the

motion at one joint has a dynamic effect on the motion at other joints, and the

torque (or force) applied at one joint has a dynamic effect on the motion at other

joints. Since the dynamic coefficients are dependent on the values of the joint
variables, the effect of dynamic coupling between motions at different joints will
depend on the actual inanipulator link configuration during motion,

In order to facilitate further reference in the dynamic and control system analy-
sis of the JPL. RRP manipulator, the lengthy and complex form of the dynamic
equations, Eqs. (12) to (17), is brought into a more compact and structured
representation,

(1) The gravity terms Di are expressed by a six-dimensional column
vector denoted by ?G’

d.e (18)

- L
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(2) The acceleration-related coefficients are expressed by a 6 x 6

symmetric matrix denoted by D, :

-~

Dy Dz Pz Dy D Dy
Do Dy D3 Dy Dys Dy
Dj3  Dps D33 Dy Dyg Dy
D, & (19)
Diy Dy D3y Dy Dyg Dy
Dys Dys D3y Dy Dgg Dy
P16 DPag P3¢ Py Dgg Deg

Let the acceleration of the six joint variables be exprcssed by a six-

dimensional column vector denoted by ‘3‘:

L (20)

JPL Technical Memorandum 33-669 19
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Thus, 211 36 acceleration-related terms in Eqs. (12) to (17) can be

written in the compact matrix-vector product form:

dA = D, q (21)

(3) The velocity-related coefficients in each of the six equations, Eqgs. (12)
to (17), can be expressed separately by a 6 x 6 symmetric matrix

denoted by Di v and defined in the following way:

: - 1
- 2D, Dy Pus P Diis  Diie
i D., 2D,  Dips Diaa Pis D26
[
S D.;3 Dips 2Di33  Pisa Piss D3¢
; A
Di,V = (22)
D,y Diz4a Diza 2Piasa  DPiss D46
D,s D5 Diss  DPias  ZDiss Dise
| Die Pize Pise Puse Dise  2Djee |
Let the velocity of the six joint variables be expressed by a six-
dimensional column vector denoted by 'q‘
-
) !
i
] |-
.
é2 L
. g’:’::
P 0
54 1. (22.2)
%
O
)
b 6-
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Then the 21 velocity-related terms in each of the six equations, Eqs.
(12) to (17), can be expressed separateiy in the following compact

matrix-vector product form:
=T

D. .4 (23)

1
2 1,Vq

where the superscript T denotes the transpose of thz column vector g,
and subscript ''i'"' refers to the joint(i = 1, ++., 6) at which the

velocity-induced torques (or ‘orces) are ''felt',

The expression given by Eq. (23) can be regarded as a component in a

six-dimensional column vector denoted by d.,:

(24)

494
1]
|
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Let the torques Tl’ TZ’ T4, T5, Té and force }?3 applied at joints
i=1l, -+, 6 be ex;:ressed by a six-dimensional column vector denoted

by dTF:

[o 7
[

TF ~ (25)

o e g

H

ey
< R
r
&
o~
L

- r Then the six, coupled nonlinear differential equations, Eqs. (12) to
i N (17), desacribing the dynamic behavior of the JPL RRP manipulator can

be expressed by the following compact and structured vector equation:

— 0

TF = DaQ+ dv + dG (26)

o

where all the necessary functional and operational definitions are pro-

vided previously in this Section.

It is noted that scme of the dynamic coefficients Di’ Dij and Di‘ in
Eqs. (12) to(17) are zero for different reasons, as the explicit coeffi-
cient evaluation will show it in the sutsequent Sections. In general,
some of the dynamic coefficients in a full scheme of manipulator
equations of motion (like the scheme of Eqs. (12) to (17)) will be, or

can be zero for the following physical reasons:

e The particular kinematic design of a manipulator can elimi-
nate some dynamic coupling (Dij and Dij p coefficients) between
joint motions,

22 JPL Technical Memorandum 33-669




e Some of the velocity-related dynamic coefficients have oniy .
dummy existence in the general scherne; that is, the: are
physically non-existent, (For instance, the centripetal fcrce
will not interact with the motion of that joint which genera:es
it, that is, Diii = 0 always; however, it can interact witn
motions at the other joints in the chain, that is, we can have
Djii # 0.)%

° Due to particular variations in the link configuration during
motion, some dynamic coefficientr may attain zero values at

particular instants of time,

The equations of manipulator motion given by Eqs. (12) through (17) are
symbolic differential equations; they include all inertial, centripetal, Coriolir,
and gravitational effects in symbolic form. (Symbolic in the sense that the

i ij’
sections the inertial (all Dii and some Dij) as well as the gravitational (Di)

D, D Dij coefficients are not specified explicitly.) In the subsequent

coefficients will be explicitly specified and evaluated.

*The relation between the general dynamic algorithm, Eq. (1), and the gener-
ally zero dynamic coefficients in the scheme of dynamic equations, Eqs. (12)
to (17), are discussed in the following memo:

Lewis, R.A., "Some RRP Manipulator Dynamic Considerations Impacting
Planning Program Implementation, !' JPL Guidance and Control Technical
Memo 343-183, 13 March 1973,

Further, the simplifications of the general dynamic algorithm developed in
Appendix D of this report explicitly show both the generally zero dynamic
coefficients and the symmetries between some of the generally existing
dynamic coefficients.

JPL Technical Memorandum 33-669 23
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IV, RESTRICTED DYNAMIC MODELS

To perform dynamic behavior and control system analysis for the JPL RRP
manipulator, functionally explicit expressions must be derived for the . aipu-
lator dynamic coefficients Di’ Dij’ and Di’p defined in the previous Section.
As seen from the defining -quations for Di’ Dij’ and Dijp' the derivation of
functionally explicit expressions for the dynamic coefficients for a six-degree
of-freedom manipulator is a tremendous task. Furthermore, the resulting
expressions can be rather complicated so that the coefficient equations can
easily get out of hand. Thus, to keep the analytic task manageable, some
dynamically meaningful restrictions will be introduced into the general dynamic
model of the TPL. RRP manipulator. The different types and classes of
restricted dynamic models are briefly described in the following subsection,

A, Alternative Model Restrictions

Active dynamic coupling between motions at different joints exists only when
several links are moving relative to each other simultaneously. (Note that
there is always a passive dynamic coupling between the motion at joint "i'"' and
the non-moving joints, ''felt' by the motor brake of the non-moving joints,)
Thus, an obvious dynamic restriction for analytic purposes is to consider the
motion only at one joint "i' at a given time £ that the positions at the other five
joints are kept. fixed in a known configuration (representing a fixed, known load

for joint motor ''i"') while there is a motion at joint "i'",

Another meaningful dynamic model restriction for analytic purposes is to con-
sider the simultaneous motion at a restricted number (a subgroup) of joints,
while the positions at the other joints are kept fixed in a known configuration,
In that case, the dynamic interaction only between moving links is of interest
for analysis, Two dynamically important subgroups of joints can immediately
be identified for the JPL RRP manipulator; the first three joints (i = 1, 2, 3),

and the last three joints (i = 4, 5, 6).

Another important dynamic model restriction is to consider only the acceleration-
related and gravity terms in the equations of motion, This restriction can mean-
ingfully be combined with the subgroup restriction described above, It is noted,
however, that, for general motions, the dynamic importance of the

24 JPL Technical Memorandum 33-669
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velocity-dependent terms in the equations of motion can only be evaluated by

an explicit evaluation of the velocity-dependent dynamic coefficients Dijp‘

B. Applications of Dynamic Model Restrictions

Though the general motions for the JPL RRP manipulator are considered to
consist of a coordinated, simultaneous motion of several or all joints, the
dynamic model restrictions described in the previous subsection have
important applications, First, they considerably contribute to an explicit
insight into the dynamic behavior of the manipulator under different motion
conditions, Second, they contribute to the development and design of a reliable
and simple control system, Third, they can profitably be used to simulate or
check out different elements and aspects of the manipulator conirol system in

real time,

The main advantage gained by the dynamic model restrictions in the analysis is
that the introduced simplifications are related to well-defined and controllable

assumptions,

JPL Technical Memorandum 33-669
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V. RESTRICTED DYNAMIC MODEL FOR THE FIRST
THREE LINK-JOINT PAIRS

The first three links of the JPL RRP manipulator are called (see footnote,
page 9)

Link 1: post
Link 2: shoulder
Link 3: boom

The associated joint variables are, respectively, 91, 62, rs. The Cartesian
reference frames fixed in the fir st three links are subscripted by 1, 2, 3.
Figure 2 shows the actual link, reference frame, and joint variable relations,
As described in general terms in footnote, page 9, the values of the two revolute
joint variables (6] and 02) and the linear (sliding) joint variables (r3) are mea-

sured in the following sense:

81 = the angular displacement of the Xl axis relative to the XO axis, posi-

tive in the right hand sense about the ZO axis;

6, = the angular displacement of the X2 axis relative to the Xl axis, posi-

tive in the right hand sense about the Zl axis;

= the linear displacement of the origin of the X:‘}Y:’Z3 reference frame
relative to the origin of the XZYZZZ reference frame, measured along

the Z, axis (always positive).

Ag seen in Fig, 2, the first three link-joint pairs constitute the main "arm-
positioning'' mechanism, and the associzted three driving motors carry the
heaviest loads, Thus, it is dynamically meaningful and important to consider
the first three link-joint pairs by themselves as a subgroup, temporarily sep-
arated from the motions at the last three (wrist) joints.

The definition of ''restricted dynamic model for the first three link-joint pairs’’
treated in this Section is the following:

e The last three (wrist) joints are at rest in a known configuration, (For
instance, an analytically convenient, ''known' configuration for the
three wrist joints is the one seen in Fig. 2,)

e There can be simultaneous motion at the first three joints, while the
wrist joints are at rest.

JPL Technical Memorandum 33-669
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The restriction has the following dynamic meaning and significance:

e The last three (wrist) links, together with an object in the hand, form
a constant (not time-varying!) load as seen by the first three joint

motors,

e There will be active dynamic coupling between motions at the first

three joints only,

The last point has the consequence that in the dynamic coefficient matrices DA
and Di,V (see Eqs, (19) and (21)) only the upper left 3 by 3 partitions are of
interest, and the state (or time) variation of three gravity terms (Dl, 2 D3,
— see Eq. (18) =) should only be considered.

In ihe ""restricted dynamic model for the first three link-joint pairs' described
above, the values of the mass center vector and ''pseudo inertia matrix'' for the
first two links (Fl, -52. Jl’ Jz) given in Appendix B at the end of this memo are
unchanged. The values of the mass center vector and '"pseudo inertia matrix'
for the third link (p~3 and J,;) as given in Appendix B, however, should be modi-
fied according to the fixed configuration of the wrist structure, That is, the
inertia properties of the wrist structure should be properly added to the values
of 33 and J 3° For the configuration seen in Fig, 2 the modification is simple,
since the wrist structure only represents a symmetric, straight extension of the
boom. In the subsequent evaluation of restricted dynamic coefficients, the wrist

structure configuration seen in Fig. 2 is assumed,

In this memo, only the gravity and acceleration-related terms are explicitly !
evaluated in the "restricted dynamic model for the first three link-joint pairs'’, !
The velocity-related terms will explicitly be evaluated in a subsequent memo,

To distinguish between dynamic coeificients belonging to the dynamic model
restricted to motions at the first three joints, and those belonging to all joint

motions, we introduce the following notation:

*.. D* = for motions restricted to the first three joints;

ij’ Tijp

Wy s«
Ty
" B

RIS TS AT I

D*

i+ D

D,, D,,, D = for motions at all joints.

ij’ “ijp
In the subsequent equations, the "star' (%) distinction will also be used for the
inertial parameters (related to link 3) which specifically belong to the restricted

i.

~
ng e %-‘
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model, The following short notation will also be adopted in the equations for the

dynamic coefficients:

p

sin 6, 56,
i i

>

cos 8, ch,
i i

i
®
<D

ssinz 0.
1
c:osZ Si é c 6

The explicit matrix functions for the Uji partial derivative matrices which are
needed in the explicit evaluation of the dynamic coefficients are listed in

Appendix A at the end of this memo,

A, Gravity Terms

In the explicit evaluation of the gravity terms it is assumed that the field of
gravity is parallel to the Z0 direction of the base coordinate frame, or in other
words, the manipulator post stands gravitationally vertical. Thus, we will use

the following value for the 1 by 4 gravity vector:

G = [0, 0, -g, 0] (27)

where g = acceleration of gravity,

1, For joint #1:
From the defining equation we have:

* - * <
D, = mGU, P, + m,GU,,?, + myGU,,7, (28)

The evaluation of Eq. (28) yields:

p’ - 0 (29)
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Eq. (29) is immediately apparent by simple physical reasoning since, by ‘
assumption, the rotation axis of joint motor #1 is always parallel to the field of :
gravity, hence joint motor #1 cannot 'feel' any gravity torque. This physical

circumstance corresponds to zero values for the vectors GU“, C}Uz1 and GU31 ‘
in the defining formula, Eq, (28), since the third row of the U“, U21 and U31 ]
matrices is zero, (See Eqs., (A.1, A.2 and A, 3) in Appendix A,) Clearly, if the

G vector would contain components other than C:z = -g, that is, if the'manipu- .

lator post would be tilted relative to the local field of gravity, then D’; would he

different from zero. This is easily seen also from the structure of the U“,

‘ , UZl and U31 matrices,

2, For joint #2:

L T -

ngE. ¢
— .

From the defining equation we have:

3% - B - 00
D2 = mZGUZZPZ + m:,’GUBZQ3 (30)

The evaluation of Eq. (30) gives:

L ) _ . (%
D, = g [mzz2 + m, (z3 +r, )] s6, (31)

Eq. (31) is also apparent by simple physical reasoning.

It is noted that Eq. (31), expressing the gravity torque ''felt' by the motor of
joint #2, is already a balanced equation with respect to the sliding of the boom
relative to the rotation axis of the motor of joint #2. The net (''balanced'’) value
of the gravity torque acting on the motor of joint #2 is simply expressed in

Eq. (31) by the term (z'; + r3) since z’; is a (necessarily) negative constant,
while r, is (necessarily) a positive variable, g

3, For ioint #3:

From the defining equation we have:

L3 % e
Dy = myGU,4,P, (32)
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The evaluation of Eq. (32) yields:

l
L D; = -myges, (33)

which is again apparent by simple physical reasoning. Eq. (33) expresses the
accelerating (or decelerating) effect of the gravity as a function of 92 felt by the

motor which drives the boom.

B. Acceleration-Related Dynamic Coefficients

Due to the symmetry of the DA matrix, only six acceleration-related dynamic
coefficients should be evaluated for the dynamic model restricted to the first
three link-joint pairs: three '"diagonal', and three "off-diagonal" coefficients.
The '"diagonal' coefficients (D:i) are related to the total inertia ''felt'' by the
motor acting at joint ''i'", due to the motor's own acceleration. The 'off-
diagonal' coefficients (D:‘j. i# j) are related to the dynamic interaction
(reaction force or torque) caused by accelerations at joints "i'"" and "j'"'. For

instance, the term p? 92 expresses the reaction torque ''felt'" by the motor of

12
joint #1 Gue to the acceleration 52 at joint #2. It is noted that, because the
symmetcry D = DJ » the same DlZ coefficient will appear in the term Dlz 1
which expreases the reaction torque felt by the motor of joint #2 due to the

acceleration °9'l at joint #1.

* * *
1. Diagonal Coefficients D“. DZ; D}_;

From the defini- ; equation we have:'

L T T

Dll = Tr(U”JIUu)+ 'rr(uu z ZI)+ Tr(UanUn) (34)
* * 'I'
*

D, = 'n-(u '.fs (35.a)

THere and in subsequent equations in this memo the ""Trace" operator will be
abbreviated by "Tr'",
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After considerable algebra and trigonometric simplifications, the following

explicit expressions are obtained from Eqs. (34), (35) and (35, a):

* 2
D1 = mikiz2
[ 2 2 2 2
tmy | kg 870, +kp35c70, ¢ r, (29, + rz)] (36)
: *[ %2 2 *2 2 ¢ —* 2
' #my | ky5870, + kyzacT, +rye 0, (225 + ry) + rz]
%
. * 2 [ %2 —*
f D2z = My + ™y [“311 +ry(2zy e "3)] (37)
' : * *
i Dy, = m, (38)
o

9 "74.‘?; : Dealing with linear motion at joint #3, Eq. (38) is immediately obvious. The
xit,gg_'* physical meaning of Eqs. (36) and (37) is also clear by interpreting the compo-

,;v”f, nents step by step.

By examining the exnlicit expressions for D’:l’ D;z and D;3 given by Eqs. (36)
to (38), the following general notes should be made:

° D:l is a function of some inertial properties of m,, m,, m; and the
variations in 92 and rs (It is obviously independent of the variation
in Ol. ) Furthermore, the constant displacement parameter r, also

contributes to the value of D’; 1’

° D;Z is a function of some inertial properties of m,, m’; and the varia-
tions in r,. (It is obviously independent of the variations in 6, and 8, )

o In general, D:‘ can be a function of the inertial properties of masses
starting with m, and ending at the mass in the hand, and car. be a
function of variations in joint variables starting at joint { + 1 and end-
ing at the last joint at the hand.
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The actual dynamical (or load) significance of the different :omponents in
Eqs. (36) and (37) can only be determined if the numerical values of the differ-

ent inertial parameters involved in Eqs. (36) and (37) are known,

* * *

2, Of{-Diagonal Coefficients DIZ’ Dl3’ D23

From the defining equation we have:
' * T * . T
. D12 = Tr(U22J2U21)+ Tr(U3ZJ3U31) (39)
'
: ® * T
o D3 = T’(U33J3U31) (40)
?

® * . T :
D23 = Tr(U33J3U32) i41)

After some algebra and trigonometric simplifications we find the following
explicit expressions from Eqs. (39) to (41):

A * _ - + % -*+ 0
Dj2 = - [‘“zzz'z msyr, (23 r3)] ) (42)

* *
D13 = -m3rzs0_,, (43)

230 (44)

The physical meaning of the expressions given by Eqs. (42) to (44) has been
explained previously. Again, the actual dynamic (or load) significance of the
D’:z and D'; 3 forms can only be evaluated if the numerical values of the pertinent
inertial parameters are known,
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VI. COMPLETE DYNAMIC COEFFICIENTS FOR
ALL SIX LINK-JOINT PAIRS

In this section we consider the JPL RRP manipulator in an unrestricted state
of motion compatible with structural, power, performance, instrumecntation,
work space, and other possible constraints. It is now assumed that several
or all six links can move (or will move) relative to each other simultaneously
when the manipulator performs a given task. In other words, we consider now
the dynamic coefficients in the manipulator equations ot motion as functions of
all possible manipulator motions. This amounts to specifying the complete
state functious for the dynamic coefficients in explicit terms. The complete

state functions for the dynamic coefficients relate the values of each individual

coefficient in explicit function terms to all pertinent link inertia characteristics
and geometric parameters, as well as to all possible configuration of the manip-

ulator (that is, to all possible variations in all pertinent joint variables).

In this memo, the complete state functions will be evaluated only for the follow-
ing dynamic coefficients: the six gravity terms in Eq. (18), and the six diagonal
elements of the DA matrix in Eq. (19); that is, the six acceleration-related
uncoupled terms in the dynamic equations. The off-diagonal acceleration-
related coefficients, as well as the velocity-related coefficients will be treated

in subsequent memos.

The explicit matrix functions for the Uji partial derivative matrices which are
needed in the explicit evaluation of the dynamic coefficients are listed in Appen-
dix A, while the six '"pseudo inertia matrices'' are listed in Appendix B at the
end of this memo. The trigonometric short notations specified in the previous
section will also be used in this Section. Additional short notations applied in

thic Section are:
sin (6, + 6)) 2 48, + )
cos (Gi + Gj) 4 c:(9i + Gj)
sin” (8, + 8)) & 4’8, + 8

cos? (6, + 8) & cP(e, + o))
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As in the previous Section, reference should be made to» Fig. 2 which shows the
actual link, reference frame and joint variable relatiors. The sense of mea-
surement for the 91, 62 and ry variables has been specified in the previous
Section. As described in general terms in Ref. 1, the last three revolute

(wrist) joint variables, 64, 95, and 96,are measured in the following sense:

64 = the angular displacement of the X4 axis relative to the X3 axis,

positive in the right hand sense about the Z 5 axis.

6. = the angular displacement of the X5 axis relative to the X4 axis,

positive in the right hand sense about the Z4 axis.

8, = the angular displacement of the X6 axis relative to the X, axis,

positive in the right hand sense about the Z5 axis.

A. Gravity Terms in Complete Form

As in the previous Section, it is assumed again that the manipulator post stands
gravitiationally vertical. That is, Eq. (<7) is used for the 1 by 4 gravity vector
G.

1. For joint #1:
From the defining equation we have:
Dy = m GU Py + myGU, Py + m3GU3, Py
+ mGU,,py+ mGUg, Py + m GU_, P (45)

‘Lhe evaluation of Eq. (45) gives

D, =0 (46)

Eq. (46) is immediately obvious for the same reason as outlined in connection
with D’: = 0, Eq. (29), in the previous Section. The additional remarks made
there are also valid here. Eq. (46) simply means that the motor of joint #1

cannot feel any gravity torque.
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~ + ms[zs(sezce5 + cezse4595) + r3s62]

S : + m()[('z6 + rb)(c02564s65 + sezces)

R - L

2. For joint #2:

From the defining equation we have:

D, = mZGUZZP- + m_,)C:U32 Py t m4uU4294

+ msubazps + m6GU62p6 (47)

The evaluation of Eq. (47) yields:

+ m3('z'3 + r3) 562

+ m4(r3se2 - ?4562 +E4c02c84)
(48)

+ r3592]

Comparing Eq. (48) to the corresponding expression for the restricted model,
Eq. (31), it is seen that changes in the wrist configuration (that is, variations
of the wrist joint variables 0 & 65 and 06) produce a gravity torque effect felt
by the motor of joint #2 in a functionally complicated form. It is noted that
Eq. (48) is already a balanced equation with respect to the sliding of the boom
relative to the rotation axis of the motor of joint #2. This is true for the same
reason as outlined in connection with Eq. (31) in the previous Section,
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3. For joint #3:
From the defining equation we have:
D, = myGU;,p, + mGU 40, + mGUg P, + m GU . B, (49)

Evaluation of Eq. (49Y) yields:

D3 = -g(m3+m4+m5+ rné’)ce2 (50)

which is physicaily apparent. Eq. (50) expresses the accelerating (or deceler-
: ating) effect of the gravity force as a function of 92, felt by the motor which
' drives the boom. Eq. (50) is completely equivalent to Eq. (33) since, in fact,

*
m3=m3+m4+ms+m6.

4. For jcint #4:

From the defining equation we have:

Dy = m,GU, P, + mGUg, Py + mGU, Py

—~
N
[
—
e b e NG WIS AT s Arene 5 o

Evaluation of Eq. (51) yields:

1

D, = g [-m4z4se4 + m E 0,80, + m(F + r6)c94805] 80, (52)

R,

Eq. (52) expresses the gravity torque felt by the motor of joint #4 as a function

of the variations in the joint angles 0,, 6, and 05.

From the defining equation we have:
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Evaluation of Eq. (53) gives:

D5 = g [ms—z5 + m()('z'6 + rb)} (592564065 + cezses) (54)

Eq. (54) relates the gravity torque felt by the motor of joint #5 to the variations

of the joint angles 62, 0, and 65.

; ' 6. For joint #6:

From the defining equation we have:

-

x D6 = m()GU66P6 (55) {
%
H i The evaluation of Eq. (55) yields: A
i i i
U 3 ‘
LY i i
| D, = 0 (56)
i
t
i’“ﬁ . Eq. (56) is physically apparent, since the center of mass of link #6 is along the
B z, axis which is the rotation axis of the motor rotating link #6. It is noted that
-4 ‘ the hand is inertially part of link #6.
B. Acceleration-Related Uncoupled Terms in Complete Form

The Dii.q.i type terms in the dynamic equations, Eqs. (12) to (17), are called in

this memo the "acceleration-related uncoupled terms'. The notion '"'uncoupled"

is meant to signify that the inertia load felt by the motor of joint "i'" is being :
dynamically generated by the acceleration of the same joint ''i'" (and not by the
acceleration of some other joint 'j'). The dynamic coefficients D,; belonging ‘
to the "acceleration-related uncoupled terms'' are the six diagonal elements of F e
the DA matrix given by Eq. (19). Thus, the dynamic coefficients Dii are o
related to the total inertia felt by the motor acting at joint "i'', due to the

acceleration of the same joint.
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In this subsection the complete state functions for all six Dii dynamic coefficients

will be evaluated. The complete state function snecifies the value of Dii in
terms of all pertinent inertial and geometric parameters of all six links, as well
as in terms of all six pertinent joint variables. Since the manipulator dynamic
model is now not restricted to the first three link-joint pairs, it can be expected
that the resulting expressionsﬁ for Dii will be considerably more complicated

than the state functions for D;i treated in the previous section. It is reminded

that the values of D:i are restricted to variations in the first three jcint vari-

ables only.

1. For joint #1:

From the defining equation we have:

Dy, = Tr (UquUfl) + Tr (UzlJzUle) + Tr (Uy,7,03) )
+ Tr (U, 3,05,) + Tr (U;,3,05,) + Tr (U61J6U(;FI) (57)
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After lengthy algebra and trigonomet

. LN “a

ric simplifications the evaluation of

Eq. {57) yields the following state function for Dllz

40

2 2 2 2 —
+m rk 8 6, + k233c 92 + rz(?.yz + r?.)]

2 2 2 2 - 2 2
+my [k322' 92 + k333c 6z + r3(223 + r3)s 62 + rz]

1,2 2 2 2 1,2 2 2
+my, §ik4ll [s 02(25 04- 1)+s 64]*-2'1(422(1 +c 821» 8 04)

2.2

2 2 2 2 - 2 -
[s 62(1 - 2s 04) -8 04]4- r3s 92 1y - Zy4r3s OZ + Zz“(rzse4 + r3562c92c94)

2

z X433
1, ,2 2 2 . 2 2, 2

+ msiz(-k)“ + kSZZ + k533) [(102305 - \.02104c05) +C 04c 65]

1,2 .2 2 2 2. 2
+3 (kG| < Kgpp * Koy (8 6, + c8,c0,)

1,.2 2 2 2 2 2 2.2 2

+i(k5“ + kSZZ - k533) [(|02c05 + C°2l°4l°5) +C €4n 05] + 1,8 Oz + 1,

* 27, [ra(szelcbs + 88,20,c0,00) - rzco"-es]z

. c0,c0, 30 )"+(ce c0.c0, - 50,20 )z
274776 4756 4 6

1 2 2 2
+mg ,7 (-kKg1n * kezz + k633) [( -Olescob - cozuo‘cesceb

1.,,2 2 2 2 2
+3 (kbll - kezz + kb‘”) [(coz-o‘cas.ob - .ez-osnoﬁ - cozco‘cib) + (cO‘c05|06 + |0‘c06) ]
1,.2 2 2 2 2 2
+ 3 (Kgyy * K22 ™ Ke33) [“°z'°4'°5 + 88,c0,)" + <708 ’5]

#[ c0.90,80, + (r cb +v)-°"z+( c0,88 r)z
1, c0;00,80, +1r S T T31TT2, TeCUs®%s = T2
2 2 2 2 2 2 2
+* z‘:b ['6(‘ 8,c e +c 8 8¢ ¢ 0,370, 8 + z-ﬂzcozao4-05c05)

* r,(l'zcﬂzle‘IOS + lzlchs) - rzc04l05]‘
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The first three terms in Eq. (58) are identical to the terms for D:;l given by
2 2

Eq. (36), except that in Eq. (58) the ''star' (*) is removed from mg k322, k333

and z3. These four '"'unstarred'' values in Eq. (58) refer to the thlrd link only.
The last three, long, and complex terms in Eq. (58) — that is, those multiplied
by m,, mg, and m, — account for the configurational inertial effects of the

motion of the three wrist joints, joints #4, #5, and #6, as ''seen' by the D“el

term in the dynamic equation for joint #1, Eq. (12). Alternatively, if the con-

figuration of the wrist joints is fixed during motion of joint #1, then the my,, mg,

m, terms in Eq. (58) all together represent only one compounded, constant

inertia number belonging to the particular, fixed configuration of the wrist joints.

This constant inertia number can be used for D11 to replace the ''starred' (%)
2

values of my; k322. k333, and z3 in Eq. (36) simply by adding this constant num-

ber to Eq. (36); in that case, the '"unstarred" mj, k322. k333. and E3 values in
Eq. (36) refer to the third link only.

It is seen from Eq. (58) that the configurational inertial effect of the different
links as 'felt' at joint #1 becomes more and more complex as we move toward
the free end (the hand) of the chain of links. The most complex configurational

inertial contribution comes from the last (#6) link.

It is noted that further trignometric simplifications would be possible for the

m,, mg, m, terms in Eq. (58). The simplifications are not carried out, how-
ever, since they do not seem to illustrate major physical points.

2. For joint #2:

From the defining equation we have:
. T T T
Dyp = Tr (UppaUpp) + Tr (Usy33035) + Tr (U0 ,05, )

+ Tr (USZJSUSTz) + Tr (U62J6U;fz) (59)
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Again, after lengthy algebra and trigonometric manipulations, the evaluation of

Eq. (59) gives the following state function for DZZ:

D

22

2

= mykyo,

[, 2

+ mg _k3“ + r3(2;:3 + r3)]

-

+m k 2

2
41411

r2 2
+ m5 _k511c

1.2 2 2 2. 2 2 2
+m6;—2- ke [(s 8, - c“8.)s“e,c 0, + 578, - c“0,)

+= k

ol -

2
+ k633c

_ 2
+ 226 [(r3 + r6c05)c65 + 1,8 045265”

c 9, +k

4

2 2
94<. 95+k

2 2
+ ces(ce5 - 4594c64866c66) +s 645 65]

222 [

2

64 + r:‘}(r3 - Zy4)]

25294+k

2 2., 2. 2 2
(c 06-566)(s 04c95+s 95-c
+ cO(cO. + 480,c0,80,c0,) + 520 sZO]

5l cOg 469,480,c8 45

2 2, 2, 2 2
943 0. + [r3(2r6c65 + r3) + r6(s 043 65 +c 05)]

2

2. 2 _
£33 0,570, +ry(r, + 2z5c95)]

2
64)

(60)

42

The first two terms in Eq. (60) are identical to the terms for D;Z given by

Eq. (37), except that in Eq. (60) the "star" (*) is removed from m,, kgll’ and
?3. These three '"unstarred' values in Eg..{60) refer to the third link only.
The terms with m 4 Mg and m, in Eq. (60) account for the configurational
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inertial effects of the motion of the three wrist joints (joints #4, #5, #6) as seen
by the D2262 term in the dynamic equation for jeint #2, Eq. (13). Alternatively,
if the configuration of the wrist joints is fixed during motion of joint #2, then the
my, mg, mg terms in Eq. (60) all together represent only one compounded, con-
stant inertia number belonging to the particular, fixed configuration of the wrist
joints. This constant inertia number can be used for D;Z to replace the
"starred' (*) values of m,, kgll’ and 33 in Eq. (37) simply by adding this con-
stant number to Eq. (37); in that case, the "unstarred" mg, kgll , and -53 values

in Eq. (37) refer to the third link only.

It can be noted again that the configurational inertial effect of the different links
as "felt" at joint #2 becomes more and more complex as we move toward the
free end (the hand) of the chain of links. The most complex configurational
inertial contribution comes from the last (#6) link, Comparing the my, mg,

and m terms of Eq. (60) to those of Eqg. (58), it is seen, however, that joint #2
"feels' the configurational inertial effect of the three wrist links through terms

which are '"simpler' than the corresponding terms of joint #1.

3. For joint #3:

From the defining equation we have:
_ T ! T T
D33 = Tr (UggdalUss) + Tr (Uysd,Uyz) + Tr (UgydgUg,)

+ 75 (0907, o

which gives

D33 = mytm,+mg+mg (62)

Dealing with linear motion at joint #3, Eq. (62) is immediately obvious. (In
fact, it can be written down without going through the transformations indicated
by Eq. (61).) It can also be noted that Eq. (62) is completely identical to the
expression for D;3 given by Eq. (38), since, in fact, m; Bmy+m,+mg+mg.
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in other words, D33 ir independent of any arm link configuration, it is a
constant. The value of D33 will only be changed when the hand grasps an object.
In that case, the mass of the object should simply be added to Eq. (62), or more

precisely, to the value of m.

4. For joint #4:

From the defining equation we have:
T T T
Dyy = Tr(UgyJ Uyy) + Tr (U54J5U54) + Tr (U64J6U64) (63)

Evaluating Eq. (63) results in the foliowing function:

_ 2
Dyy = myk ,,

2 2 2 2
+ ms(k5“s 95 + k533c 05)

2 2 2 2 2
66 + k633c 65

2 2 2
+m, [k“ls 0,c°8, + K ,,8 6.8

+ 1, (25, + r)8’0,)] (64)

-

Eq. (64) is physically apparent, and can easily be interpreted term by term.
The similarities and dissimilarities of Eqs. (64) and (30) are also noteworthy.

5. For joint #5:

From the defining equation we have:!

Dgs = Tr (UgglgUss) + Tr (Ugs?,Ugs) : (65)

tSee also remark at the end of this section.
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which yields the following explicit state function:

_ 2
Dy = mgkg,,

2 2 2 2 _
+m, [kbl]c O + Kg,p,8°0, + 1 (27 + r6)] (66)

Eq. (66) is also apparent physically, and can easily be interpreted term by term.

The similarities and dissimilarities of Eqs. (37) and (66) are again noteworthy.

6. For joint #6:

From the defining equation we have:!
T
Dgg = Tr (UgeTsUss) (67)

which gives

_ 2
Dge = Mekg3s (68)

Eq. (68) is obvious. In fact, it can be written down immediately without going
through the formal transformation indicated by Eq. (67).

Remark

The formal definitions for D‘“. DSS' and D“ given by Eqs. (63), (65) and (67)
involve a great deal of unnecessary computations. By noting that D, only
depends on the inertias of links #4, #5, and #6, while Dgg only depends on the

1See also remark at the end of this section.
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inertias of links #5, and #6, the fnllowing computationally more convenient

definitions can be {and have been) used for D«H and DSS:

T
18 )3 (arinss )|

Dgg = Tr [( QTZ )Js( QTZ )T] * Tr [( QTZTg )Jb( QTiTg )T]

In a similar manner, we can also write for D66:

D, = Tr [( QTd )Jb(QTg )T]

But even the evaluation of this last expression for D66 is unnecessary since

Ey. (68) can be written down immediately.

The mathematical derivation of the simplifications introduced here in the
general algorithmic definition of Dii is treated in detail for all manipulator

dynamic coefficients in Appendix D at the end of the report.
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VII. CONCLUSIONS

Values of total link inertias and the different torque/force components acting

at the manipulator joint drives are essential parameters for manipulator control
system design, It is seen frc n the dynamic equations derived for the JPL

RRP manipulator that there is no siimple proportionality between torque (or
force) acting at one joint and the acceleration of the same joint when several
joints are in motion simultaneously. Even if only one joint moves at a given
time, the proportionality between torque and acceleration is a complex function
of the actual configuration of all links ahead of the moving joint, that is, of all

Jinks between the raoviug joint and the hand, including any load in the hand,

In the case of simultaneous moti~n of several arm joints, the torque (or force)
acting at each joint is the sum of a number of dynamic components which can
be classified into four groups: (a) inertial acceleration of the joint; (b) reaction
torques or forces due to acceleration at other joints; (c) velocity-related
(centrifugal and Coriolis) reaction torques or forces; and (d) gravity terms,
Obviously, the gravity terms are onl - dependent on the relative position of the
links, while all other dynamic comporents are dependent on both the configura-

tion and the dynamic state (relative acceleration and velocity) of the links,

1Y ST 1 AP

The explicit state equations derived in this memn for some of the dynamic
coefficients of the JPL RRP manipulator allow important quantitative conciu-
sions regarding variations in total link inertias and gravity loads as seen at
the different joint drive motors during arm motion, Further, the explicit state

AN N

equations of the inertial (diagonal) and acceleration-related reaction (off-
diagonal) dynamic coefficients derived for a restricted manipulator dynamic
model allow a general quantitative evaluation of the rulative importance nf some
of the acceleration-related torque/force reaction components versus inr : *ial
torques/forces,

The constant geometric and inertial parameters for the JPL RRP manipulator
used in the subsequent evaluation are identical to those determined and
compiled elsewhere.” (Parameter values arealsolisted in Appendix B.)

*Walker, B., "RRP Manipulator Inertial and Mass Distribution Characteristics, "
JPL IOM 343-4-73-142, 28 February 1973,

Dobrotin, B,M., "Input Shaft Inertias fo. RRP Manipulator, " JPL
IOM 343-4-73-268, 13 April 1973,
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A, Variations in Total Inertia at the Joints

The totai link inertias as scen at the different joints are given by the diagonal
elements Dii of the DA matrix defined by Eq. (19). The complete state equa-
tions for the D, dynamic coefficients are given by Eqgs. (58), (60). (62), (64),
and (68), These equations only refer to the mechanical structure of the manip-
ulator. Changes in these equations due to a load held in the hand are elaborated

in Appendix C,

In the subsequent evaluation of variations in total inertias we compute the
maximum variation in Dii with and without load in the hand as well as the mini-

mum value of D, without load in the hand. The assumed load is a 1.8 kg,

442 cm3 cube, placed with its mass center at the origo of the hand (X6’ Yé,

Z6) coordinate frame. In the computations, the constant and varying* compo-

nents of Dii are treated separately. All computed values are referred to the

output at the respective joints, including the input inertias at the joint drives.

As seen from Eqgs. (58), (60), and (64), the variations in D“, DZZ’ D44 are
functions of several joint variables, Thus, an analytic search for maximum
values of D“, DZZ’ D44 would imply the determination of hill tops of surfaces
or hypersurfaces. Instead of this mathematical technique, we apply physical
reasoning and select an appropriate (and allowed) set of joint variables which

will yield the rearched maximum value for Dy;e

1. Inertia Variations Seen at Joint #1

The value of Dl 1 given by Eq. (58) specifies the variations in the total inertia
felt at joint #1 as a function of the joint position vector q.

——

a) Constant components of Du:

Input inertia at joint No, 1 = 0,953 kg- m2 ,
+m K> = 0,255 kg-m2 !
17122 2 !
+2m,y,r = =0,192kg.-m
27272 2 2 .
+ (mz +m3+m4+m5)rz = 0,320 kg-m

Total constant 1,318 kg m

S

‘Variationo due to changes in both link motion and load held in the hand,

48
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b) Maximum variations ir D

K

Assume: 92 = %60 deg (horizontal orientation uf the boom)

a1
"

3 111. 76 cm (maxinmium extension of the boom)

(2]
1]

4 0 deg (see Fig. 2)

(o2
1]

5 0 deg (see Fig. 2)

0 deg (see Fig. 2)

The last three conditions will move the mass of the wrist/hand mech-

anism farthest from joint axis #1.

o .

Under the five conditions specified

above, Eq. (58) gives the following components for D), in addition to

the constant components.

1) With no load in the hand:

2
m,yk; g

2
+ mskyy,
+myr, (22, + 1,)

+ k2

+1/2m 422

2

4 K41
2

tky33)

+ m,r, (r3 - 2y4)

2

+ nSkSZZ

+ mgr, (ZES + r3)
2

+tmekeos

2
+ m6r2

JPL Technical Memorandum 33-669

0. 108

2.51

-0. 815

kg m2

kg- m2

kg. m2

0. 0002 kg- m>

1,332

0.003

0. 87

0, 005

0,013

kg. m2
kg m2
kg- mz
kg m2
kg- m2
49
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2 _ . 2
+my (r6 +r3) = 0.96! kg m
+2m,z, {r, +r,) =  -0.13 k-m2
6%6 \'3 7 Te . 8
Total maximum inertia addition,
with no load in the hand = 4.857 kg. m®

Hence, the maximum total value of inertia felt at joint #1 with no load

in the hand is:

it

(no load in the hand) 1.318 + 4, 857

D1 1, max

(69)

6. 176 kg+ m° !

2) With load in the hand:

Only the mb-related terms will te changed. According to
the specifications of the load and the load's emplacement in
the hand, we will have the following new values for the

m, - related terms:

i
=

¥ 5 ) ,
L - mgky o = 0.006 kg-m
Fm (e, +r.)° = 4307 kg'mz
6'° 6 3 :
2 2
+mgr, = 0.061kg-m |

Total

4,374 kg.m® ;
It is noted that the 2m6'i'6(r3 + r6) term remains numerically
unchanged. Thus, the net maximum inertia change due to

the specified load in the hand becomes:

4,374 - 0,979 = 3. 395 kg- m®

50 JPL Technical Memorandum 33-669
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Hence, the maximum total value of inertia felt at joint #1

with the specified load in the hand is:

D (with load in the hand) = 1,318 + 4,857 + 3,395
11, max
(70)
= 9.57 kg-m?
c) Minimum value of D“:
Assurne: 62 = 0 deg (vertical orientation of the boom)

64 = 0 deg (see Fig. 2)
6, = 90 deg (see Fig. 2)
06 = 0 deg (see Fig. 2)

It is noted that the condition e2 = 0 deg will make Dll inde-
pendent of rs. Further, the condition 95 = 90 deg will move
the mass of the wrist/hand mechanism closest to joint axis
#1. Under the four conditions specified above, Eq. ,.3)
yields the following components for Dll in addition to the

constant components:

2 _ 2
m2k233 = 0.1 kg m
2 _ 2
+ mykiag = 0,006 kg.m
2 _ 2
+ m4k422 = 0,001 kg-m
2 _ 2
+ msk511 = 0,003 kg:m
- 2m.Z,.r = -0.012 kg-m2
59572 TV
2 - 2
+ m6k6ll = 0,005 kg-m

JPL Technical Memorandum 33-669 sl
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2 2
+ m6(r6 - rz) 0.004 kg.m

- 2
+ Zmézé(r(:J - rZ) -0,008 kg-m

Total minimum inertia addition, with no

load in the hand = 0.099 kg. m2

Hence, the minimum total value of inertia felt at joint #1

with no load in the hand is:

Dll ._(no load in the hand) 1.318 + 0,009
, niin (71)

[ 417 kg-m°

1}

In summary, the following ratios (relative values) can be formed for inertia

B variations seen at joint #1:

D (no load in the hand)
’ 11, max - 4,36 (72)

{no load in the hand)

BWRAA B N W . g, L

& Dll, min

Dl 1, max(With load in the hand)

D

= 6,75 (73)

(no load in the hand)

11, min

2, Inertia Variations Seen at Joint #2

The value of Dzz given by Eq. (60) specifies the variations in the total
inertia felt at joint #2 as a function of the joint position vector q.

a) Cons;ant components of QZZ.

Input inertia at joint #2 = 2,193 kg. m?

2 - 2

+ mzkzzz = 0,018 kg.m
2 - 2
Total constant = 4,721 kg mz

52 JPL Technical Memorandum 33-669
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b) Maximum variations in DZZ:

Assume: ry = 111, 76 cm (maximum extension of the boom)
6, = 0 deg (see Fig. 2)
8 = 0 deg (see Fig, 2)
96 = 0 deg (see Fig. 2)

Under these four conditions, Eq., (60) gives the following components

for D, in addition to the constant components.

22

1) With no load in the hand:

- 2
m,r,(2z; + ry) = -0.815 kg. m
2 _ 2
+ 2y = 1.332 kg- 2
m4r3(r3 - y4) = . g:m
2 _ .. 2
+ m5k511 = 0,003 kge m
23 = 0.87 kg~ m®
+ m5r3(r3 zs) = . g
2 _ 2
+ mgke ) = 0.005 kg- m
2r, + = 0.929 kge:
+ m6r3( r6 !'3) - . g 3-
2 ) 2
+mgr, = 0,032 kg-m :
i
- . 2 .
+ Zm6z6(r3 + r6) = -0,13 kg m e
Total maximum inertia addition, with
no load in the hand . 2,228  kg-m>
JPL Technical Memorandum 33-669 53
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Hence, the maximum total inertia value felt at joint #2 with no load

in the hand is:

x(no load in the hand) = 4,721 + 2, 228

= 6.949 kg-m°

D
22, ma (74)

2) With load in the hand:

Again, only the mé-related terms will be changed., According to
the specifications of the load and the load's emplacement in the

hand, the following new values are obtained for the m6-re1ated

. terms:

* ) mekzu - 0,006 kg-m?

L ,

z | +m6r3(2r6+r3) = 4,165 kg'm

:

j + myre = 0,142 kg.m> ;
. Total = 4,313 kg-m?‘ ;

It is noted again that the 2m626(r3 + r6) term remains unchanged
numerically, Thus, the net maximum inertia change due to the

specified load in the hand becomes:

+
L
— - by b >

a o

4.313 - 0.965 = 3,348 kg- m>

Hence, the maximum total value of inertia felt at joint #2 with

the specified load in the hand is:

DZZ, ma_x(wit:h load in the hand) = 4.721 + 2, 228 + 3. 348 (75) - ;
= 10,297 kg-m® s
54 JPL Technical Memorandum 33-669
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c) Minimum value of D

22°

Assume: 64 0 deg (see Fig. 2)

65 = 90 deg (see Fig. 2)
66 = 0 deg (see Fig. 2)

The condition ; = 90 deg will move the mass of the wrist/

hand mechanism closest and parallel to joint axis #2, It
is noted that nc assumption can be made for ry yielding

DZZ, min’ instead, it has to be computed as follows,

Under the three assumptions cpecified above Eq., (60) yields the following com-
ponents for D,, in addition to the constant terms:

2 2
m4k411 = 0,002 kg-m
2 2
+ m5k533 = 0,0004 kg-m

2 ,
+m6k633 = 0.0603 kg'm

Total = 0.003 kg-m2
Further, we will also have r3-dependent terms forming a quadratic expression:
w(ry) = Ar? + 2Br
3 3 3
where

A=m3+m4+m5+m6= 6.474 kg

B MyzZy - Mgy, + Mgzg = -2.71 kaem

JPL Technical Memorandum 33-669 55
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The value of rs yvielding ¥ hin 18 obtained from

dy _ _ B _
?1?; = ZAr3+ZB = O%r&extremum = -x " 41,9 cm

Consequently, we have

2
Yrin = -1.135 kg-m

Hence, the minimum total value of inertia felt at joint #2 with no load in the

hand is:

22, min(no load in the hand) 4,721 - 1.135 + 0,003 76)

3,589 kg m°

n

D

In summary, the following ratios (relative values) can be formed for inertia

variations seen at joint #2:

D {no load in the hand) (77)

22, max 1.95

DZZ, min {no load in the hand) B

DZZ, max(with load in the hand) - 2o (78)

DZZ, min (no load in the hand) 3

3. Inertia Variations Seen at Joint #3

The value of D, given by Eq. (62) is independent of any relative position of
the joints. Only the mass of a load held by the hand can change the value of “
Dy, Hence, for the specified load, we have the following ratio (relative value) %
for inertia variations seen at joint #3:

At e s A s < -
oy

[
4
5
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D33’ max(no load in the hand) - Equivalent input + m, +m, +mg + m, =
(79)
D33 min (no load in the hand) = 7,257 kg
D33, max(with load in the hand) 9,057 _ - (80)
D . (no load in the hand) ~ 7-257 '
33, min

4, Inertia Variations Seen at Joint #4

The value of Dyy given by Eq. (64)specifies the variations in the total inertia

felt at joint #4 as a function of the relevant components of the joint position

vector Q.

a) Constant components of D44:

Input inertia at joint #4 = 0,106 kg- m?

2 2 :
+m4k422 0.001 kg-m

0,107 kgom2 i

Total constant

b) Maximum variations in D 44°

Assumae: 95 = 90 deg (see Fig, 2)

\4
It turns out that D 44 will be independent of 6, for any value of 6 since

211 = k622 for the JPL RRP manipulator resulting the identity

sinz 66 + coszeb = 1 for the k6ll terms in Eq. (64). According to the
6; = 90 deg condition specified above, Eq, (64) gives then the following
components for D 44 in addition to the constant terms.

JPL Technical Memorandum 33-669 57
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1) With no load in the hand:

2 _ 2
m5k5“ = 0.003 kg-m
2 _ 2
+ mékbll = 0.005 kg.- m

- 2
+ m6r6(2z6 + r6) = 0,008 kg.-m

Total maximum inertia addition, with no
load in the hand = 0.016 kg-m>

Hence, the maximum total inertia value felt at joint #4 with no load

in the hand is:

D (no load in the hand) 0,107 + 0,016

0.123 kg-m®

44, m

2) With load in the hand:

Only the m6-related terms will be changed. According to the
specifications of the load and the load's emplacement in the hand,

we will have the following new values for the m6-re1ated terms:

0. 006 kg.mz

2
mekey)

+myrg(2Z, + rg) = 0.118 kg m®

2

Total 0.124 kg-m

Thus, the net maximum inertia change due to the specified load in the

hand becomes:

0.124 - 0.013 = 0.111 kg-m?

58
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Hence, the maximum total value ¢. inertia felt at joint #2 with the
specified load in the hand is:

D (with load in the hand) = 0,107 + 0,016 + 0,111
44, max (82)
2

0.234 kg'm

c¢) Minimum value of D44:

Assume: 6; = 0 deg (see Fig. 2)

According to this condition, Eq. (64) yields the following components in addition
to the constant terms:

2 _ 2
mekga, = 0.0004 kg.m
2 2

Total minimum inertia addition, with
no load in the hand = 0,001 kg m2

Hence, the minimum total value of inertia felt at joint #4 with no load in the
hand is:

D44, min(no load in the hand) = 0.107 + 0,001 (83)
= 0.108 kg m?
In summary, the following ratios (relative values)can be formed for inertia
variations seen at joint #4:
D“. max'?° load in the hand - L1s (84)
D“. min (0 load in the hand) *
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x(w1th load in the hand) (85)

D
44, ma = 2,17

D

(no load in the hand)

44, min

It is noted that the extremum (minimum and maximum) values of D44 can also

be determined without any assumption on Gy since Eq. (64) is a function of

one variable:

_ . 2 2
= asin 05 + bcos 65 +c,

Dy
where
a = 0.015 kg-m?
2 no load in the hand
b = 0.00]1 kg-m
¢ = 0.107 kg.m?

The extremum of D44 will be obtained at 1 values which satisfy

dD44
?6-5— = 2a sinas c°'95 - 2b lines C0565 = 0

That is,
sinzos (a-b) =0 x

since a # b, we must have sin 265 = 0 which yields 8 = 0 or 90 deg. For
8g = 0 deg we will have minimum value for D“

RN o g < S e 4

2 .
D“. min = b + c = 0. 108 kg'm H :f‘é

while for 0, = 90 deg we will have maximum value

]
D = a+c =0,123 kg-m

44, max

IS B & way -~



5. Inertia Variations Seen at Joint #5

The value of DSS givea by Eq. (66) specifies the variations in the total inertia
felt at joint #5 as a function of 95. It turns out, however, that D55 becomes
independent of 65 since kzll = kzzz for the JPL RRP manipulator resulting in
the identity sinz 05 + cos 95 = 1 for the kbii terms in Eq. (6(). Consequently,
only the inertia properties of a load held by the hand can change the value of

D55. Hence, we will have the following values for D55.

a) No load in the hand:

- Input inertia at joint #5 = 0.098 kg- m2
L4 2 2

+ m5k522 = 0.003 kg.m
i 2 ) g 2
i + meke ) - 0.005 kg.m

: - 2

H i = 00 .
i ,. + m6r6(2z6 + r6) 008 kg-m
§ s . z
! ¢ Total = 0.114 kg.m

Hence,

. 2
D55, max - DSS, min(no load in the hand) = 0,114 kg'm (86)

b) With load in the hand: '

We will have the following new values for the m6-related terms due to
the specified load:

0.006 kg.m?

2
mekeyy

0.118 kg-m?>

Total = 0.124 kg-m> %
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Thus, the net inertia change due tc the specified 1oad in the hand becomes:

2
0.124 - 0.013 = 0.111 kg.m

Hence, the total value of inertia felt at joint #5 with the specified load in the

hand is:

55,max(With load in the hand) = 0,225 kg- m2 (87)

In summary, the following ratio (relative value) can be formed for inertia

variaticn due to the specified load in the hand:

D55’ max (load in the hand)

D55’ min (no load in the hand)

2.0 (88)

6. Inertia Variations Seen at Joint #6

As seen from Fq. (68), D66 is a constant. We have then:

Input inertia at joint #6 = 0.02  kg- m2
+mk = 0.0003 kg-m°
Total = 0,02 kg- mz
Hence,
D, max = D6, min (10 10ad in the hand) = 0,02 kg-m> (89)

JPL Technical Memorandum 33-669

T e

Rl R AT TR U R T R



Ll AT e e L T

-

o

SN YR T Y

If the specified load is held by the hand, we will have:
k = 0,002 k 2
M6%633 R g m

Hence, the variation in inertia due to the specified load in the harnd is

0.295 - 0.049 = 0,002 kg.m?>

yielding

D (load in the hand) = 0,02 + 0. 002
66, max .
2 (90)

0.022 kg.- m

In summary, we have the following ratio for inertia variation due to the
specified load in the hand:

D (with load in the hand)
669 max =1 09 (91)
D . (20 load in the hand) . .
66, min

All computed exact total inertia variations are summarized in Table 1 and dis~
played in Figure 3,

B, Maximum Gravity Load Variations

The gravity load felt at the different joints as a function of the total joint posi-

tion vector q is given by Eqs. (46), (48), (50), (52), (54), and (56). As seen
‘rom Eqs. (46) and (56), there is no gravity load at joints #1 and #6 since
Dl = Db = 0 always, because, by assumption, joint axis #1 is gravitationally
always vertical, and ;6 = ;’;6 = 0 even with load in the hand if the mass center of
the load is placed at the origin of the hand coordinate frame (X, Y6’ Z6) or
along the Z, axis. Assuming again a (1. 8 kg) 1oad and symmetric emplace-
ment of the load in the hand, we compute the maximum gravity torques

JPL Technical Memorandum 33-669 63
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(or force) as seen at joints #2, 3, 4, 5, referred to the respective joint

outputs.

As seen from Eqs. (48), (52), and (54), D D4, and D_ are functions of several

joint variables. Thus, a mathematical seirch for maxfmum values of DZ’ D4 i
and D5 would mean to determine hill tops of surfaces or hypersurfaces. By '
physical judgement, however, an appropriate and allowed set of joint variables

can be selected for each gravity term yielding the maximum value for Di' (It

is noted that the minimum value of any gravity term for the JPL RRP manipula-

tor is zero.)

i The subsequent calculated gravity loads should be interpreted as absolute
values. The # polarities can be indicated according to the appropriate joint

variable values,

e

1. Gravity torque at joint #1

P

\
I .
LU D, =0 2
! i 1 (92)
: !
! | \
P %
R 2. Gravity torque at joint #2
_ﬁ > a. Maximum value with no load in the hand.
' Assume:
e 2 ° +90 deg (horizontal direction of the hoom)
ry = 111, 76 cm (maximum boom extension)
94 = 0 deg (see Fig. 2)
85 = 0deg (see Fig. 2) - ﬂ
0, = 0deg (see Fig. 2) -
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The last three conditions will move the mass center of the wrist/hand mechanism

farthest from joint axis #2 in a horizontal direction., Under the assumptions

specified above, Eq. (48) will give the following terms:

Z

m -0.0445 kg-m

272

+ m3(z3 + r3) 2.0072 kg-m

+my(ry -y, = 1.201 kg'm
+ mS(ZS + r3) = 0,7423 kg-m
; + mé(z6 + r6) = 0.0806 kg-m
€
; i + m,r, = 0.5755 kg:m
¢ i Totzal = 4,562 kg-m
v
?
§ Hence,
DZ,max (no load in the hand) = 4.562 g = 44.75 N'm (92a)

b. Maximum value with load in the hand:

The mb-relaced terms will have the following new values due to the specified
load in the hand:

0. 5254 kg.-m

m6(z6 + r6)

2.5826 kg-m

MeTe

Total, together with

unchanged terms 7.011 kgem

f

*g = acceleration of gravity = 9. 81 m/uzcZ

JPL Technical Memorandum 33-669
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Hence,

2 max (with load in the hand) =7.011 g - 68,77 N-m (93)

It is easily seen from Eq. (48) that for 0 2 = 0 deg, 04 = 90 deg and 65 = 0 deg

we will have
2, min ~

3. Gravity force at joint #3

a. Maximum value with no load in the hand:

It is obtained at 62 = 0 (or 180) deg, that is, having the boom in vertical
direction. We have then from Eq. (50):

3, max (no load in the hand) =(6.474 kg) g = 63.5 N (94)

b. Maximum value with load in the hand:

We will have for the specified load:

D3,max (with load in the hand) = (8,274 kg) g = 81, 17 N (95)

Obviously, for 02 = + 90 deg we will have

D

{
o

3, min ~

JPL Technical Memorandum 33-669
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4. Gravity torque at joint #4

a. Maximum value with no load in the hand:

Assume:
62 = £90 deg
94 = 0 deg
65 = +90 deg

Equation (52) yields then the following terms:

mezg = 0,0359 kg-m
m()(z6 + r6) = 0,0801 kg.m
Total = 0,116 kg.m

Hence,

4, max {no load in the hand) = 0,116 g = 1. 138 N-m

b, Maximum value with load in the hand:

The m6-related term will have the following new value due to the specified

load in the hand:

m()(?6 +ry) = 0,525 kg-m

Hence,

D (with load in the hand) =0,561 g = 5,503 N-m

4, max

JPL Technical Memorandum 33-669
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Obviously, for OZ = 0 deg we have

4, min ~

5. Gravity torque at joint #5

a. Maximum value with no load in the hand:

Two sets of assumptions can be made:

62 = 90 deg
64 = 90 deg
95 = 0 deg

Then, from Eq. (54) we will have:

<D
il

0 deg

D
]

= 290 deg

MgZg = 0.0359 kg.m 5
‘ 4
+ m6(z6 + 26) = 0.080] kg.m 2
Total = 0,116 kg.-m %
Hence,
Ds,max (no load in the hand) = 0.116 g = 1. 138 N-m (98)

b. Maximum value with load in the hand:

The mb-related term will have the following new value due to the specified

load in the hand:

m6(;6 +rg) = 0,525 kg-m

JPL Technical Memorandum 33-669
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Tence,

DS, masx \with load in the hand) =0.561 g = 5.503 N.m (99)

As seen from the previous equations,

=D .
4, max 5, max

6. Gravity torque at joint #6

]
D, = 0

6 (100)

e -

It is noted that Eq. (100) is only true here because of the assumption that

X, = ;6 = 0 even with a load in the hand. Suppose, however, that the mass

center of the load is off from the origin of the hand ccordinate frame so that

P — A L Ay e u
-
PR

the net result is, for instance, ;6 = 1 in, 1ln the case of a 1, 8 kg load this will

produce 0.58 N.m gravity torque at joint #6, for instance, for 6, = 0 deg,

o wasin

04 = 06 = 90 deg configuration as seen from Eq. (C. 4) in Appendix C,

All computed maximum gravity load variations at the different joints are sum-
marized in Table 2. To complete the summary, Table 2 also shows the maxi-

mum gravity load variations referred to the motor shaft together with motor

stall torque and gear ratio.

C. Relative Importance of Inertial Torques/Forces Versus Acceleration-
Related Reaction Torques/Forces

The explicit atate equations of the inertia terms and acceleration-related reac-
tion torques/forces derived in Section V for the first three link-joint pairs of
the JPL RRP manipulator can be utilized for a general quantitative evaluation
of the relative importance of the related dynamic components in the torque or

force equations,

As seen from the state functions of D:i and D:j developed in Section V, we
have the following acceleration-related non-zero terms in the torque/force
equations for the first three link-joint pairs:

% » *
D))®) +D)3 8, #Dy3ryteeeee = Ty (101)
JPL Technical Memorandum 33-669 71
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D 8 +D. 8, +cetee = T (102)

)
(e
+
=
"
-+
]!
o]

(103)

Using Eqs. (36) through (38) and (42) through (44) which state the respective
functions for D1

i and D;:J., we form the following ratios:

D* - (a, + a,r,jco

1 E 2
Dll a; + [az+a3r3+a4r3]s 02+asc 9Z

13 7892
R, = =~ = - - 2] — (105)
11 % [32”‘3’3 a4r3 )8 by T 2350 by
D’ (a, +a.r,) cO
R 12 _ 6 " 27730 Y 106
DZZ 38 + a3r3 + a4r3
b
- a,s80
R, = == = ——% (107)
D,, 4

where a, *e+++, a_ are constants with the following values (determined by

9
using the appropriate ''starred'" values for the ine .ia of the third link having

the wrist configuration as shown in Fig. 2 and referring inertias to the output):

2

1.334 kg-m

2.635 kg.m?>
‘3 L -5. 5 kgom

6.474 kg

[ 4
[ Y
L]

0.108 kg.m>

»
L ]
L}
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-~ =0,453 kg-m2

6
a, = 1.05 kg.m
ag = 4.74 1c,g-m2
ag = 7.26 kg

The maximum (absolute) value of the ratios specified by Egs. (104) through (107)
is obtained when the nominator has maximum (absolute) value and the denominator

has minimum (absolute) value.

For the ratio R, the maximum value is obtained for 6, = O deg and r, = r
1 2 3 3, max

= 111,76 cm, These conditions give:

|a6 + 44a7|

Rl.max 'lal +a5|

1

0.5 (105)

The maximum value of R2 requires special consideration. For 8, = 90 deg

and r3 = 50,8 cm we have

_ | 241
2, max 2
lal + a, + azry + a4r3|
= 0.0037 cm™! (109)
For the ratio R; the maximum value will occur when 6, = 0 deg and
ry= 111,76 cm. * These conditions give:
R i |a6 + 44a, |i
3, max ~ ' |
|2g + 448, + 40) ;4|
= 0.11 (110)

*
This r3 value can be obtained by computing r3 from the condition
dR3/dr3 = 0 for 6, = 0 deg. » optimum
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For the ratio R4 the maximum value is obtained when 0Z = 90 deg. This gives:

= 14,45 cm (111)

An examination of Eqs. (108) through (111) for the relative ratios leads to

interesting conclusions elaborated briefly below,

‘ 5 Equation (108) shows that for IGI‘ = I éll and the specified configurational
conditions, the reaction torque felt at joint #1 due to the acceleration at

joint #2 will be 5({% of the inertial torque at joint #1. Figure 4 depicts the

; ratio Rl ag a function of 62 for ry= 111. 8, 81,3, 50.8 cm, respectively, Of
course; some of the upper part of the ry;=8l.3cmandr, = 50 8 cm \« .rves
on Fig. 4 are unrealizable for the JPL RRP breadboard, since some segments
of the upper part of these two curves imply that the boom hits the vehicle piat-

] form or a wheel, depending on the value of 6 1’ Figure 4 is intended to

1 iliuetrate the conditions under which the two torques %

‘

D* . % 9 D* w 9 ) i

119 D128 = D), (6, + R 6, (112) 4

’;161. As seen from Eq. (112), the validity of this

approximation depends on the magnitude of Rléz relative to 31. It is noted that

the sum (51 + Rléz) can also attain zero value,

can be approximated by D

The ratio RZ has dimension ¢:m'l since it is related to the sum of the two

tornues
p* 6 +D .y, = D’ (8, +R.F 113
1191 + D373 = D},(&) +R,ry) (113)
For instarce, for 31 =0.5 nd/lecz. i’3 =12.7 cm/ucz and RZ = RZ max’ tne

dynamic significance of Rzi".‘ is one tenth of the dynamic significance of 01.
The sum (61 + RZ;S) car. alsc be zero. Figure 5 shows Rz as a function of Oz
for ry= 111.:, 81,3, 50.8 cm, respectively, As seen, Rz.max is dependent
of r3.

JPL Technical Memoranduin 33-669 L]
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Figure 4. Relative Importance of 51/ 52 Coupling
as Seen at Joint #1
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Figure 5. Relative Importance of 6)/r3 Coupling
as Seen at Joint #1
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It is noted again that some of the upper part of ry= 81, 3 and 50. 8 c¢cm curves
are unrealizable for the JPL RRP breadboard for the same reasons as explained
for Fig. 4. The qualitative differences between R2 and R1 are clearly seen

by compar.ng Figs. 5 and 4,

R3 is shov+ in Fig. 6 as a function of 02 for ry = 111.8, 81,3, 50.8 cm. For

the upper part of the r, = 81,3, 50,8 cm curves in Fig. 6 the remarks are the

3
same as for Fig. 4. R, measures the relative importance of 6, as seen at

joint ¥2, while R, measures the relative importance of 62 as seen at joint #1.

1
Therefore, it is worthy to note both the quantitative and qualitative differences

i between R3 and R1 by comparing Figs. 6 and 4. The significance of R3 is again
'; best seen in the equation:

Dlzel + DZZ 92 = D22 (R39l + 92) (114)

s e

Ay e

For instance, for le = |e and R , the reaction torque felt at joint #2
1 2 3, max

due to the acceleration at joint #1 is 11% of the inertial torque at joint #2,

P S X WD

which is substantially less than the 50% generated by the acceleration at

joint #2 and felt at joint #1. TFor 92 = [60,90) deg, however, Rl and R3

become nearly equal. It should be noted that the dynamic significance of R1

: and R3 in the respective total torque equations is widely different since no

- ‘ gravity torque acts at joint #1, while at joint #2 the gravity torque has a

aa bt v oy

dominant effect. In many instances the gravity torque felt at joint #2 is

several orders of magnitude greater than any acceleration torque felt at
joint #2. Therefore, to evaluate the relative dynamic significance of the
different acceleration torques with full meaning, the total torque equations

should be considered.

The ratio R4 has dimension '"em" since it is related to the sum of the two
torques

% % * . -
13 91 + D33 r3 = D33(R, 8, + 1) (115)
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The variation of R4 is depicted on 1o, 7, R4 is independent of T3, and varies
as a sine wave scaled to a maximum amplitude of 16,19 c¢m. It is seen
that for 'r'3 =12.8 c'r.n/secz, él =0.5 rad/sec2 and R4 = R‘*’ max the dynamic
significance of R4 6i is about two-thirds of the dynamic significance of '1;3.
This effect should be compared to the inverse effect expressed by R2F3
versus 91 in Eq. (113). See also example following Eq. (113). Il is noted
that the gravity force has a dominant effect at joint #3 as a function of 02.

Thus, the full significance of R4 cannot be evaluated without considering the

total force equation for joint #3, In fact, it can be expected that the gravity

force felt at joint #3 will overshadow any acceleration force component by

several orders of magnitude in most of the time,

Figures 4 through 7 can be combined into an integrated dynamic scheme for
the torque/force equations in a straightforward manner according to the

following equations, which are equivalent tc Eqs. (101 through (103):

% . . v
Dll(el +R.192 + R2r3) + eeeee = Tl (116)
E3 . . v _

D,,(8, + RyB ) + +oee e = T, (117)
Di.(F, + R,® = F 118
33(1'3 4 l) + I EEEEREEEE N 3 ( )

In these equations, Rl, RZ’ R3, R4 should be considered with the proper

% signs (and not in absolute values!) according to the definitions given by
Eqs. (104) through (107). The combined effect of the summation in the
parenthesesin Eqs. (110) through (118) can be zero as well as greater or less

than any of the components in the parentheses.

In summary, it is noted that all four ratios (Rl' RZ' R‘i' R4) attain maximum
value at GZ = 0 or 90 deg, Further, Rl, max and RS, max fequire that, in addi-
tion to 63=0 deg, wealsohavery =r3 gy =111.8 cm simultanecusly, Doth con-
ditions are quite extreme fromthe view point of normal tasks expected for the JPL
RRP manipulator. When such conditions may occur, two other things will also
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happen simultaneously: (a) the related acceleration values are (or can be
made) sufficiently low; or (b) the effect of the acceleration-related rcaction
torques/forces is significantly overshadowed by other dynamic effects (gravity
torque or force). Hence, it is expected that acceleration-related reaction

torques or forces will be quite irsignificant under normal operating conditions.

D. Simplification of Torque/Force Equations

One of the main advantages gained by the development of the explicit state
equations for the dynamics of the JPL RRP manipulator is that the relative
significance of the different torques/forces as well as the relative importance
of the different state components contributing to a torque or force term can be
explicitly evaluated for varying tasks and operating conditions. In this memo,
explicit state equations have been presented for total link inertias and gravity
loads for all six link-joint pairs of the JPL RRP manipulator. Thus, we can
evaluate the relative significance of the different state components contributing
to the inertial and gravity terms at the joints, as well as assess the relative
importance of the inertial and gravity loads acting at the joints as a function
of the state of the manipulator. A full evaluation of all dynamic terms will be
provided in a subsequent memo after the development of the state equations

for the acceleration- and velocitv-related reaction torques/forces.

1. Inertial Terms

The state equations derived for the Dii dynamic coefficients in Section VI. B

are transformation equations which transform the moinents of inertia of the

links ahead of link "i'" (i +1, i +2, **+, n), computed in the respective link
coordinates, to the rotation axis of joint '"i,' Examining the different com-
ponents which contribute to variations in total inertias as a function of the joint
position vector, it is seen that some components are insignificant and can be
neglected without introducing sensible errors. In the subsequent simplifica-
tions, the state equations for Djj should be viewed together with the exact numer-
ical data presented in Section VII. B where the maximum and minimum values of

total inertias as seen at the six joint axes have been determined,

JPL Technical Memorandum 33-669

pe—

o

e ey



a. Joint #1: Simplified State Equation for D“.

. 2 2 .
Since mzk211 and m2k233 are nearly of equal magnitude, we have

2
211

2 2 2 2 2 i
mzk s 92 + m2k233c 92 ~ a(s 92 +c 62) - a

where ""a'" is the mean value of the two moments of inertia, It is a constant,

and can be added to the constant components of Dll’

The following moments of inertia can be set equal to zero due to their :mall

value relative to other components in the state equation for D, 1

2
; m3kyzg

i 2 f
myka :

IR

, ! ,
H
* m k422

- . — N I o

2
mgkyqq
> z
mgks gy
2
mgkgss

2

mgkgsy
2

mekeyy

2
mekeas

2
mgke33
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All these simplifications reduce the state equation for D11 to less than one-third
of its complete (and extremely complex and lengthy) form given by Eq. (58),
The arror .ntroduced by these simplifications will be very small: less than

J. 5% for D , and less than 2% for D

11, max 11, max’

Introducing the simplifications defined above, and performing the possible
algebraic reductions of the remaining terms in Eq. (58), the state equation of

D} 1 takes the foliowing simplified form:

, 2y 2
= 1 T
1)11 by = b3r3+b4r3)s 92

e Ty o260 -
} r3 LbSS 92 65 + bés(262)504s 65 + b7s(292)ce4 + b85(204)505]

2 2 2 2 2 2 2
+b9[ c 943 95 + s Gzc 95 +c st 648 95 + s(292)364s95c65 ]

+b,.c6,s6 +bl s6, +hb (119)

10475 174 712

AR - Y N gk T g

1 where bl’ cen ey b12 are constants given by
l:'1 = Constant components of Dll (see page 48) 1.319 kg-m2
L 1 2 2 2
: t3 (mzk211 + m2k233 ) 0.104 kg-m
2
Total: 1.423kg - m
No load in With load in the hand
the hand (Load as specified)
b, = m,k2 2.51 2.51 kg- m®
2 37322 ¥ . £
- = - v .5.4 L2 2 .
b, 2(1’!\323 m4y4) 9 5.49 kg.m
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bll

b

In view of the numerical value of the constants bl’ vses b

12

2m5z5 + Zmé(z6 + r6)

m6(r6 + z6)

No load in

With load in the hand

the hand (Load as specified)
0,232 0.396 kg: m
0.08 0.523 kg- m
-0. 006 -0.006 kg- m
0,036 0,036 kg' m
2
0.008 0.118 kg. m
" 2
0,038 0. 181 kg:m
2
-0. 002 -0,002 kg. m
2
0.013 0, 059 kg. m

/b, Eq. (119) can

be further simplified without introducing sensible errors. The most significant
part of Eq. (119) is the first lire which contains b,,
load in the hand, these components yield for ry = 111.3 cm and 8, = 0 and 90 deg:

Dll,mi.n

D1, max

5, 89 kg. m’

b,,b., and b

With no

3 4°

Comparing these values to those given by Eqs. (71) and (69), it is seen that
the error is 4%. With load in the hand, however, the same components yield

D ax - 8.15 kg.mz

11, m

which has an error about 15% when compared to the corresponding exact value
given by Eq. (70). This error can be reduced to 10% if the b5 term is retained

JPL Technical Memcrandum 33-669
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in Eq. (119). Retaining the b_ term in Eq. (119) will also reduce the error in

5
D, max Vith no load in the hand from 4% to 1%. The b, term will also account
for the major part of the variations in D11 due to changes in 65. Hence, a very
simple and sensible state function which approximates the value of D11 with

good accuracy is the following expression:

_ ’ 21 2
D, = b+ [bz #(by +bscO )Ty +byry |78 (120)

‘ . i where the values of parameters b4 and b5 2lso depend on the load held in the
hand according to the simple formulas specified above for b4 and b5‘ Compar-
ing Eq. (120) to Eq. (58), it is easily seen that the computational complexity of
Dll will be reduced nearly by 98% -vhen Eq. (58) is replaced by Eq. (120). The
content and strength of Eq. (120) becomes apparent after physical reasoning.

. -

e I

. ~ b, Joint No. 2: Simplified State Equation for D;,. |

e —— .

ha Y

In the state function for D22 given by Eq. (60) the fol-

lowing moments of inertia can be neglected due to their small relative value:

ARt Wi o b

1 ’ '2

. : mykg),y

R 2
oy mykyq,

mgk )
{

2
mgkeos

2
mgkga,

2
mykeqy

2
meke oo

2
meke3s
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Introducing these simplifications, Eq, (60) can be written in the following

reduced form:

_ 2
Daz = by3 toyry # (b3 +bgcbgr,
2 2 2
+b9<b 645 65 + c 65> (121)
where
b13 = constant components of D22 (see page 52)

4,72 kg. m2

b3, b4, b5, b9 are constants, identical to those defined and computed
for D11 previously, (See pages 84 and 85,)

Equation (121) yields the following extremum values for DZZ:

.
%
2
%
-5

. _ 2
DZZ, max (no load in the hand) = 7.09 kg.m
DZZ, max (with load in the hand) = 9,64 kg.m
DZZ, min (no load in the handj; - - 59 Kkg. mz

Comparing these values t_ the correspondin, .-.act v- (.- ‘s given by Eqgs. (74),
(75), (76), it is seen that the error introduced b ;1 ::aplificaiions is between
2% and 6%. Equation (121) can be further simp ifiec " ocinitting the by term,
and the total maximum error introduced into Dzz ~ 111 still be less than 8%,
Hence, a very simple and sensible state function which approximates the value
of DZZ with good accuracy is:

- . 2
Dzz = bl3 + ‘b3 + bs cOs)r3 + b4r3 (122)

where the values of parameters b 4 &nd b, also depend on the load he. .n the
hand according to the simple formulas defined on pages 84 and 85 for D)), Itio
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worthy to note that the b3, b5, b4 terms ;n Eqs. (122) and (120) are identical,
except that they are not multiplied by s 82 in Eq. (122). Comparing Eq. (122)
to Eq. (60), it is seen that the computational complexity of D22 is r2duced
nearly by 90% when Eq. (60) is replaced by Eq. (122). The content and strength

of Eq. (122) is apparent by physical reasoning.

C. The Wrist Joints,

As discussed in Subsection VII. B-4, the state function

of D44 given by Eq. (64) is bemg reduced without simplifications to the follow-

2
ing form due to the equality m6k6 11 = m6k622

_ 2 2
D44 -bl4+blss 05+bl6c 95 (123)
where
b14 = constant components of D44 (see page 57)
= 0. 107 kg.m2
and the other constants are given by:
No load in With load in the hand
the hand (Load specified)
b, = mki . +mk>  +b 0.015 0. 127 . m?
15 © Msks)) t Mgkgy) * by ¥ : kg m
2 2
b16 = msk533 + mﬁké’33 0.001 0. 002 kg. m

Neglecting the b, term in Eq. (123) will introduce only 1% — 6% error. Hence,
we have the following simple state function which approximates the value of
D 44 with good accuracy:

D

44 =P

Lo +b153205 (124)

where the value of prrameter "15 ali:c depends on the load in the hand accord-
ing to the simple expression specified above., A: > .n, the content of Eq. (124)
is apparent by simple physical reasoning.
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As shown in Subsection VII, B-5, the value of D‘35 and D66 is constant:

D55 = bl? + bls (125)
D66 = b19 + b20 (126)
The parameters in Eqs. (125) and (126) are separated into two parts: b” and
b19 are true constants, while the value of b18 and bZO depends on the lead held
in the hand :=cording to the following expressions:
No load in With load in the hand
the hand (Load specified)
b =mkZ  +b 0.013 0.125 kg- m°
18 6611 " 79 ' ’ g
b, = mk> 0.0004 0. 002 kge m®
20 6 633 ' ' g

While the true constants are:

0.099 kg- mz

b,

b 2

No specific simglifications are needed for D33 given by Eq. (6¢) since
D33 is a co.'stant; its value can only be changed by the mass of the load held
in the hand.

The functional form of the simplified state equations for the D“, DZZ'

D 44 coefficients is noteworthy:

L.L
Dll -f(Oz.r 0 b bZ'b3'b4'b5)

JPL Technical Memorandum 33-669 89




where superscript "L'" indicates that the respective ''b" parameters also

depend on the load held in the hand.

2, Gravity Terms

The complete state equations for the gravity terms developed
and presented in Section VI. A are not too complex functions. The functions
for D.2 and D4 given by Eqs. (48) and (52) can be slightly simplified if needed

for a price of small errors,

3 ; The state function for DZ can be organized in the following form:
D2 = g(dl + d2r3)892 + gd3(592065 + c62564s95)
+ gd4c62c64 (127)

where g = 9,81 m/sec2 (acceleration of gravity), and the constant parameters

dl’ . ...,d4 are given by
No load in With load in the hand
the hand (Load specified)
d1 = m,z, + m,z, =My, -2.788 -2.788 kg-m
d2=m3+m4+m5+m6 6.47 kg 8.28 kg
d3 = mgzg + m6(z6 + r6) 0.116 0. 566 kge m
dy = mgz, -0.006 -0.006 kg-m

As seen, the d 2 and d3 parameters depend on the load held in the hand,

Equation (127) is exact. It is seen, however, that the contribution of the
d 4 teri.: to the value of D2 is insignificant, less than 1%, Thus, we can use the
following simplified equation which reproduces the value of D2 with very good

accuracy:

DZ = 8(61 +d,r,)e8, + gds(sezces + c62064165) (128)

S
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It is noted that the potential importance of the d3 term increases as r,
and/or 6, decreases.

The exact state function for D4 can be expressed as

D, = gd

4 sezc64ses - gd4562564 (129)

3

where the parameters d3 and d4 are identical to those defined and computed for

D‘2 above., The relative significance of the d4 term in Eq. (129) can be expected

as small in most of the time. Hence, we can use the following reduced state

function as a good approximation for D 4

D4 = gd:ssezce‘}se5 (130)

However, the form of Eq. (129) is simple. Therefore, not much is gained by
omitting the d4 term from Eq. (129) if the maximum 0,056 N.m value of the d4

term (as referred to the output) seems important.

It is noted finally that the state functions for D3 and D5 given by Eqs, (50)

and (54), respectively, can be written as:

D, = -gd,c0, (131)

D5 = gd3(s62394c95 v ¢6,80,) (132)

wherethe parameters cl2 and cl3 areidenticaltothose defined and computed for Dz

previouely,
The simplified state equations developed for the inertial and gravity terms

of the JPL RRP manipulator together with the related parameters are summar-
ized in Tables 3 and 4.
E, Relative Importance of Gravity Terms Versus Inertial Terms

The simplified state equations for the gravity and inertial terms allow an
easy functional evaluation of the relative importance of gravity versus inertial
terms in the torque/force equations, We form the following four ratios:

D
2 _ Eq., (128
Kl=ﬁ-z-;-—ga.—-h-zz{ (133)
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Table 3.

Simplified State Equations for Inertia and Gravity

Loads at the Six Joints

Inertia Terms:
D11 = b1 + [bz + (b3 + bé‘ces) ry t bi"rg]szez
D,; = Byy *(by + by'eo) ry + by
Dy; = by
Dyy = byg + bi5s’0;
Dy = by + by
Dgg = Brg * bz
Gravity Terms:
D2 =g (d1 + d;"r3) sGZ + gd:I,: (sezces + c92594595)
D, = - gdj'co,
D4 = gd§562c64564
Dg = gdg‘ (962594c65 + cezses)

L: depends on the load in the hand
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Table 4. Parameters in the Simplified State Equations for

Inertia and Gravity Loads

b

b

b3

bi" = m, +m4 +m5 +m6

bé“ = st?z's + Zmé)(?6 +ry)

b3

P14

bry - ms“gu +m6“€11 +mro(ry +22))
by7

s o 2 -
b18 = m(’ké’11 -i-mbre,(r6 + 2z6)

19

byo = Mgkess

d

d;' = bl andal - o0.05 b}

1.423 kg- m?
(201.5 oz-in~-sec?)

2.51 kg m2
(355.5 oz-in-secz)

-5.49 kg-m
(-19.75 oz-secz)

6.48 kg*
(0.592 (0z-sec?)/in)

0.232 kg m*
(0. 834 oz-sec?)

4,72 kg.mé
(668 oz-in-sec?)

0.107 kg. m2
(15.17 oz-in-secz)
0.015 kg. mésx
(2.19 oz-in-sec?)
(14.01 oz-in-sec?)
0.013 kg. mZx

(1. 81 oz-in-secz)
0. 02 kg- m2

(2. 81 oz-in-sec?)

0. 0004 kg. m?x
(0. 05 oz-in-sec?)

~2.788 kg-m
(=10, 03 oz-sec?)

L: depends on the load in the hand

¥*; quoted number is referred to ''no load" in the hand
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D
_ 73 _ Eq. (131
K2 "D " Eq 62 (134)
33
D

Py Eq. (130
%3 * 1, = Fq{12aT (135)

_DPs  Eq. (132)
%4 *B,, " Eq. (125 (136)

For 04 = 95 = 0 deg, we have the following expression for K1 according

to the definition given by Eq. (133):

g(d1 +d3+d

r,)
K, = 2 3 > 56, 1 > (137)
b13 + (b3+b5)r3 + b4r3 rad/sec

As seen from Eq. (137), the relative importance of gravity torque versus
inertia torque at joint No, 2 varies essentially as a sine wave of 92 with an
amplitude dependent on T, The absolute value of K1 given by Eq. (137) is
shown in Fig, 8 for three ry values, The 'b'' and ''d'"" parameters which appear
in Eq. (137) and depend on the load i. che hand are takea for the specified
load, The function K1 is normalized to 1 rad/sec2 angular acceleration at
joint No, 2. For instance, if 52 = 0,5 rad/secz, the gravity torque at joint
No. 2 for 02 = 60 deg and ry = 96.5 cm is 14 times the value of the inertia
torque. Or, for the same conditions, the gravity torque is only 3.5 times the

value of the inertia torque if 52 = 2 rad/sec?,

The ratio Kz defined by Eq. (134) simply gives (without any condition on
any state variable):

K, = g, [——l—z-] (138)

Thus, the relative importance cof gravity force versus inertia force at
joint No. 3 varies exactly as the cosine of Oz with a maximum

JPL Technical Memorandum 33-669
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amplitude = g = acceleration of gravity., The absolute value of K‘2 is shown
in Fig. 9. It is noted that K2 is independent ~f any inertial or geometric
parameter. The ratio KZ on Fig, 9 is normalized to 1 cm/sec:2 linear acceler-

ation at joint No. 3,

For 94 = 0 deg, the ratio K,; defined by Eq. (135; gives the following

expression:

gd,s & r
K3 i b,,+h 576 SOZ Lrad/sec ] (139
14 15 5

Thus, the relative value of gravity torque versus inertia torque acting at joint
No. 4 varies essentially as a sine wave of 62 with an amplitude dependent on 65.
The absolute value of K3 given by Eq. (139) is shown in Fig. 10 for two 95
values., Again, the '"b'' and ''d" parameters,which appear in Eq. (139) and
depend on the load in the hand, are taken for the specified load. The ratio K3
is normalized to 1 rad/ec2 angular acceleration at joint No, 4. It is interest-
ing to note that the relative importance of gravity torque versus inertia torque
can be more predominant at joint No. 4 than at joint No, 2 as seen by comparing
Figs. 8 and 10,

For 6, = 90 deg, the ratio K, defined by Eq. (136) gives the following

expression:

gd; 1
K, = ————¢c8 — (140)
4 b17 * b18 2 [rad/sec ]

Thus, the relative value of gravity torque versus inertia torque varies exactly
as the cosine of OZ for es = 90 deg. But, as seen from Eq. (132), K4 will vary
as the sine of 02 if 05 = 0 deg and 0, = 90 deg. Or, if 6, =0 deg, then K4
varies as the sine of 65. However, the maximum amplitude of any wave vari-
ation in K 4 is fixed, independent of any state variable. Figure 11 shows the
absolute value of K 4 28 given by Eq. (140), normalized to 1 rad/ lecz angular
acceleration at joint No, 5. As seen from Figs, 8 and 11, the relative impor-
tance of gravity torque versus inertia torque at joints No. 2 and No. 5 can be

JPL Technical Memorandum 33-669
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nearly equaI.T Again, the values of parameters d3 and b18 ir Ta. (140) are

taken for the specified load held in the hand.

As a main conclusion, it is seen that the gravity terms at joinus No. -2,
3, 4, and 5 have a relatively high significance versus the corresponding inertia
terms, However, the overall significance of the gravity terms in the torque/
force equations can only be evaluated when all relevant reaction torques/forces

are also considered in the equations,

The four ratios given by Eqs. (137) through (140) and displayed in Figs, (8)
through (11) are linear functions of the field of gravity '"g." For 'g'" values
smaller than the ''g'" on Earth (for instance on the Moon or Mars), the relative
importance of gravity terms versus inertia terms at joint No.'s 2, 3, 4, and
5 of the JPL. RRP manipulator would correspondingly decrease.

P

tsince K1, K;. K3, K4 are defined in terms of the corresponding simplified state
functions which carry some errcr, the ratios displayed in Figs. 8 through 11

will also carry some error. In the average, however, the error in the ratios

can be expected less than 8 ~ 10%. !
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APPENDIX A

COMPLETE SET OF PARTIAL DERIVATIVE MATRICES U
IN FUNCTIONALLY EXPLICIT FORM
FOR THLE JPL RRP MANIPULATOR

The partial derivative matrix functions Uji are essential ''building blocks'' in the
general algorithm applied in this memo for the dynarnic model of a manipulator,
To derive the explicit functional relations for the Di’ Dij’ and Dijp coefficients
in the dynamic equations for the JPL. RRP manipulator, the Uji matrices must
first be determined in a functionally explicit form for this particular

manipulator,

The general function definition for the Uji m ‘ices is given in Section Il in the
1ain text., For easy reference, the functional meaning of the t'vo running matrix
indices in the U.i notation is repeated here: the first index (j) always refers to
the highest index number in the concatenated link transformation matrix, while
the second index (i) always refers to the index number of the joint variable with
respect to which the partial derivative is taken in the concatenated link irans-
formation matrix, Consequently, Uji # 0 only for i < j; otherwise fori > j

Uji =0,

As seen from the definition, the Uji matrices are functions of the manipulator
joint variables and link displacement constants. In general, for a system of n
joint variables a particular U, i matrix becomes a function of all joint variables
and link displacement constants starting from index 1 and going up to (and
including) index j, but will be independent of the joint variables and link dis-
placement constants which have index number greater than j. It is noted that

the dimensionality of the Uji matrices is 4 by 4,

In this Appendix all Uji matrix functions which are pertinent to the JPL RRP
manipulator are compiled in an expanded and functionally explicit form. Deal-
ing with a six degrees-of-freedom manipulator (i, j=1, ..., 6), and keeping in
mind that Uj # 0 only ior i s j, we will have 21 Uji matrix functions different
from sero. The individual functional definitions for all 2] Uj £0 mtricen are
listed in Table A, 1. The six individual link transformation matrices 'l‘ i-1

(=1, ..., 6),upon which the explicit expansion of the 21 Uji # 0 matrices of the
JPL RRP manipulator is based, have been given previously in Table 2 of Ref. 1.
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The subsequent 21 functionally explicit expressions for the Uji matrices for this

mrnipulator are not available elsewhere in the literature.

The parareter and variable definitions and notations used in this Appendix are

identical to those specified in Tables 1 and 2 of Ref, 1, In particular, itis

noted that we use the following short notations

si = sin Gi
c, = cos 6,
i i
in the suhsequent expressions.
-sl 0 -¢y 0
< 0 -8, 0
Ull = (A.1)
0 0 0 0
| 0 0 0 0.
r 1
-slcz ¢y 3182 -rzc1
clc2 -sl clsz -rzsl
Uz = (A.2)
0 0 0 0
| O 0 0 0 )
<y -8,¢, -8,8, '(r3'1'2 + rzcl)
U31 = (A.3)
0 0 0 0
_0 0 0 0 ]
JPL Technical Memorandum 33-669 A-3
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F(c1c4 - 81C284) 8,8, -(cls4 + slc2c4) -(r3sls2 + rzclﬂ
(slc4+clczs4) ~c, 8, -(8184— c1c2c4) (r3clsz- rzsl)
U41 = (A.4)
0 0 0 0
] 0 0 0 0 |
(¢ c4cg ~(c) 8, (c cy8q -(r3sls?j
- 8)C,8,C, + slc2c4) - 8)C,8,8; + rzcl)
; + 818;85) - 818,¢5)
(slc4<:5 -(3184 (slc485 (r3clsz
U = (A.5)
51 + €1C,8,C¢ - c1c2c4) t ¢ c, 8,8, - rzsl)
- clszss) + clszcs)
0 0 0 0
i 0 0 0 0 ]
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M -y "
(c1c4c5c6 (—clc4css6
- slczs4c5c6 + slczs4c586
+ slszssc6 - 51828586
" €1%45% " ©1%4%
%
é (8)c c5c (-8)c4058¢
3? U,y =
% 61 + €1€284%5C¢ - clczs4css6
- 813486 - 8]84S
+ c1c2c4s6) + clc2c4c6)
0 0
| 0 0
" . T
cls2 0 €% 0
-slsz 0 slcz 0
Uy =
'CZ o -'2 0
| 0 0 0 0]
0 —clsz clc2 r3c1cz
0 -lllz '1°2 r3.l°2
Usp =
0 ‘Cz '.2 -1‘302
0 0 0 0
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(c1c4s5
- SIC28485

8,8,C5)

(8)c 85

+ CICZS485

+ clszcs)

{rele 8y

- SICZS455

- slszcs)
- (1388,

+ r2c1)§

{r6(31c455
+ clczs4s5

+ CISZCS

(A, 6)

+(r3c152

- rzsl)}

(A7)

(A. 8)
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-C18,8, -c <, -c 8,C, r3c1c27 |
818384 "81C  "B1%C T3%1% ;
-C,8, 5, -C,Cy -1,5, I
| 0 0 0 0 ] i
-(c;8,8,¢ -C8,C, (-c 8,8,8; r3c1c2'\
+ CICZBS) + c1c2c5)
‘ -(81828405 '81°2c4 (-81828485 r,).slcZ
H ' USZ - + slczss) + slczcs) (A. 10)
3
‘ (—(:strc5 -CyCy '(°28485 -T38,
,. }
o t o 0 0 0 *
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62 =

33 °

~(e15,84¢5%
+ CICZSSC()
+ clszc486)
-(8)8,8,¢5¢,
+ 81C285C6
+ slszc436)
(-ep84c5c
+ 8235(:6
- c2c4s6)
L 0
[0 0 0
0 0 0
0 0 0
| 0 0 0
[0 0 0
0 0 0
0 0 0
0 0 0

(clszs4css6

+ CICZSSSé

- clszc4c6)

(s)8,84¢58¢
+ slc29586

- slszc4c6)

(czs4css6
- 8,8:8;

- c2c4c6)
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(—clszs4s5

C
+C1

(-8)8,8,8;5

+ slc

2€5)

2¢5)

~(ey8,8,

+ 8

2S5)

{rel-c 18,8455
+ C1C2c5)

trac o

{rgl-88,8,485
+ SICZCS)

+ r3slc2}

-{r6(czs455
+ SZCS)

+ r3sz}

(A, 11)

(A, 12)

(A, 13)




53

63

44

0 0 0
0 0 0
0 0 0
[ 0 0 0
[0 0 0
0 0 0
0 0 0
| 0 0 0

-82C4

(-8184 + c1c2c4)

(cls4 + slczc4)

€1%2
81%2
(A. 14)
€2
0 -
€182
8182
(A. 15)
€2
0 -
0 -(8)c, + cCy8) 0]
0 (c)ey - 8ycp8y) O
(A.16)
0 3234 0
0 0 0]
-(91c4 ("1'4'5 0]
+ °1n2'4) + °1°z°4'5)
(c1c4 (cls4s5 0
- '1c2'4) + =l°2°4'5) (A, 17)
lzl4 "2°4'5 0
0 0 0

JPL Technical Memorandum 33-669

‘iﬁ‘“

R

B

e 7 ———



T S W . e Sghea L e s s

¢ B
- P

T ST i RIAN

64"

(~sls4c5c6
+ CICZC4C5C6
-8.¢c,8

17476

-C1C28486)

(c)84¢5¢

+ SlC2C4C5C6
+ C]‘C486

- 8)C8,8)

(-85c4c5¢
+szs456)

(

(

0

818455

- C1C2C4C586
- 81C4C6
'CICZS4C6)

-C184C586

_81c2C4c586
+c1c4c6

- 81¢,8,S)

(szc4css6
+szs4c6)

(8)c4%5

+c1czs4c5

-clszss)

(-cjc4cs

- 8)8,8;)

-(858,c,
+ <, 35)
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(-8,8,48¢
+c1c2c4s§

(cls4s5
+slc2c4ss)

"82%4%5

0]

ré(-sls4s5
+clc2c4s5

relc 8,85
+»slc2c4ss)

-1‘682C495

(A.18)

(A.19)
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A-10

-(81c485%
+clc28485c6
+c182°5c6)

(c;c485%
- 8)€28485%

- Bl 82C5C6)

(858485
-czcscé)

(-8;c4¢5%

= €1C284%5%
+ C1823586

- 8)84%
+°l°2°4c6)

(c1°4c5'6

- 8,C,8,Cc8;
+8,8,8:8,
+°l'4°6
+|1c2c4c6)
(lzl4c536

+ cz '5.6

I 0

(81c4858%
+ C1C2343536
+c192c556)

(-c1c4sss6
+8,C,8,858;
+slszc556)

(-8,84858¢

“265%)

(-slc4c5c6

" €12%4%5%
+c1s205c6

+ ‘1'4.6

'°1c2°4'6)

(clc4c5c6

- 8,C,8,C5C
+8,8,8:C,
“€1%%
"1°2°4'6)

(lzi4c5c6
+8,c 4'6)

0

(slc4c5
+c1czs4c5
-c15289

(-c1c4c5
+8,C,8,Cg
- 81%2%5)

-(8,8,4¢5
+czs§

0 0
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r6(slc4c5
+€,€,84C5

- ¢ 8,85)
r6(-clc4c5

+8,Cy8,Cq

- 518285)

-r6(8254c5
+c259
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APPENDIX B

LINK MASS CENTER VECTORS AND PSEUDO INERTIA MATRICES FOR
THE JPL RRP MANIPULATOR

Using the notations introduced in Section III in the main text, and applying the
parameter values determined for the JPL RRP manipulator elsewhere (see

footnote on p. 47), the six link mass center vectors and the six pseudo inertia
matrices are compiled in this appendix. The essential point in the subsequent

listing is to distinguish betwe *n zero and non-<ero parameter values. The

. actual numerical values for the non-zero inertial parameters are supplied at
" i the end of this Appendix.
| 4
% Mass Center Vectors
é t [0 ] [ 0]
1 ‘{! _ yl _ Vg
. = p =
s 4= |
z z
: 1 4
' . ¥ | 1] . i
0] 0]
; v 0
p - — p = —
2 zy 5 zg
e l - b l -
- o - > 0 -
- 0 - 0
P = P o=
3 6
83 56
[ 1] |1

As seen, for ?5 and ;6 we use sero since their numerical value is very small,
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Pseudo Inertia Matrices

Note: k?" = k.2 , k.2 = k‘.2 ) k.z = k? and the first index (i) refers to the
ill ixx’ "i22 iyy’ "33 izz
index number of the link,
1/ .2 2 2 ) A
2\ <111 K122t K33 0 0 0
1,2 2 2 _
0 Z(klll - k12?.“‘133) 0 vl
v : J'l = rnl
A ' 1/(,2 2 .2 ) —
_, 5 0 0 Z(k111+k122 ki3] %)
; .
é :
0 v z 1
: : ! Y1 1 J
| |
' ! 1( .2 2 2 T
é Y
i z( k211 ”‘zzz*kzss) 0 0 0
' R 12 2 .2 _
0 (511 - “zz.ﬁ"zss) 0 Y2
-~ Jz = mz
1{,2 2 2 -
0 0 z(kzl 1+ %222 " kzsa) %2
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’<
g
'
1 L2 2 2 1 |
z(‘k311+k322+k333) 0 0 0 '
12 2 .2 |
0 z(ksn - k322 ”‘333) 0 0 .
T3 = my
: 12 .2 .2 ) =
: 0 0 z(ks 11 k322" k333) Z3
% 0 0 A 1 ﬁ
’-l--kz 21+ K ) 0 Y 0T
ARTTIRAPRAT!
1f,2 2 2 ) -
0 z(“411 R TPPRA T 0 Y4
Tg =™y
1,2 2 2 ) =
0 0 z(k411“‘422 kg33) 24
- - 1
I 0 Y4 24 i
1,2 2 2 ) 1
z(“‘su*kszz“‘sas 0 0 0
1, 2 2 2 )
0 z\511 ~ K522 * K533 0 0
s "™ 2 .2
1/, 2 -
0 0 7(“511”‘522“‘533) zg
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"1 .2 2 2
z(‘ksu tkea2 +k633) 0 0 0
1/,2 2 2
0 z(“eu “keaat kess) 0 0
Te = Mg
1/, 2 2 2\ —
0 0 'z'(keu tkeop- k633) z
i L 0 26 l-

Remarks on loads in the manipulator hand, and the inertial characteristics of
link #6:

It is noted that the mass center vector 36 and "pseudo inertia matrix" Jb as
specified in this appendix are only related to the fixed, constant structure of
link #6. (Link #6 includes also the hand.) If the manipulator hand keeps and
moves a load, then the inertial properties of the load should be properly added
to the inertial properties of link #6. That is, the value of the 36 ve “tor and J6

LA

matrix should be modified according to the inertial properties of the ioad.

SR Changes in torques (and force) due to a load hept and moved by the hand will be
"{felt" (and can also be computed) at the different joints through the appropriate
modifications of the value of the -66 vector and J 6 matrix.

Clearly, when handling irregular (and, by definition, ''remote') objects with
mass comparable to the mass of link #6, only compensating estimates can be
made for changes in the inertial properties of link #6. Even when handling regu-
lar objects, the changes in the inertial properties of link #6 can only be esti-
mated, since it is not known ahead of time how the grasping operation will
exactly succeed in emplacing the object relative to the hand coordinate frame,

or which is the same, relative to the coordinate frame of link #6.

The effect of handling loads (that is, the effect of modifications in the li.ertial
properties of link #6) on some of the manipulator dynamin coefficients is shown
in the subsequent appendix.
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Numerical values of non~zero inertial components of the JPL RRP manipulator

determined elsewhere (see footnote on p. 47), and applied in tl.:~ report are as

follows:

2
myk3g

2
makizs

2
mykyas

L}

9.29 kg

1.75 ecm

~11.05 cm
2

0: 276 kg'm

0.255 kg. m®

?
0.07) kg-m.

5.505 kg
-10.54 cm

«0.79 cm
2
0.108 kg'm
2
0.518 kg- m
2

0.1 kg'm
4.25 kg
«-64.47 cm
2.51 kge m>
2.51 kg-m®

0. 006 kg m®
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i

(0. 849 (oz-secz)in\
(0. 69 in)
(-4.35 in)

(39,1 oz-in-secz)
. 2

(36.15 oz-in-sec")
. 2

(10. 03 oz-in-sec’)

(0.513 (oz-secz)/in)
(-4.15 in)

(-00 31 in)
. 2
(15.28 oz-in-sec’)
. 2
(2.49 oz~in-sec )
2
(14.13 oz-in-sec )

(0. 388 (oz-sec’)/in)

(355.5 oz-in-ucz)
(355.5 os-in-oocz)

(0. 854 os-in-ucz)
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n

f

"

1.08 kg
0.92 ¢cm

-0.54 cm

0.002 kg. m®

0.001 kg-m?

0.001 kg- m°

0. 63 kg
0.03 =0 cm
5.66 cm

0.003 kg. m®

0.003 kg- m2

0. 0004 kg. m®

0.51 kg
0.14 =« 0 cm
-9.22 cm

0.005 kg- m?

0.005 kg- m>

0. 0003 kg m>

(0.099 (oz-secz)/in)
(0. 364 in)

(=0.212 in)
. 2
(0.253 oz-in-sec)
. 2
(0.167 oz-in-sec™)
. 2
(0.156 oz-in-sec™)

(0. 058 (oz-secz)/in)
(0.01 = 0 in)

(2.23 in)
. 2
(0.385 oz~in-sec™)
. 2
(0. 360 oz-in-sec”)
. 2
(0.057 oz-in-sec")

(0. 047 (0z-sec?)/in)
(0.057 = 0 in)

(=3. 63 in)
(0. 667 oz-in-secz)
(0. 667 oz-in-secz)

(0. 049 oz-in-secz)
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The two geometric parameters of the JPL RRP manipulator applied in

the calculations are:

r 16.2 cm (6.375 in)

2

re 24,76 cm (9. 75 in)

The input shaft inertias referred to the output are as follows:

At joint No. 1: 0.952 kg'm2 (135 oz-in-secz)
At joint No. 2: 2.193 kg- m® (310. 6 0z-in-sec)?
g At joint No. 3: 0.782 kg (0. 07143 (0z-sec®)/in)*
¢
; At joint No. 4: 0.106 kg-m2 (15. oz-in-secz)
i . 2 . 2
; At joint No. 5: 0.097 kg.-m {13, 7 oz~in-sec™)
;
i At joint No. 6: 0.02 kg- m? (2. 81 oz-in-sec?)
| .

Derived metric conversion factors applied in this report are as follows:

Liength: lin = 2.54 cm
Mass: 1 (oz-secz)/in = 10.945 kg
Static moment; 1 oz--sec:2 = 0.278 kgrm
Moment of inertia: 1 oz-in-secz = 0,00706 kg-m2
Force: 1 oz =0.278 N
Torque 1 oz-in = 0,00706 N.-m

*Equivalent mass,

JPL Technical Memorandum 33-669 B-7
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APPENDIX C

MANIPULATOR DYNAMICS WITH LOAD IN THE HAND

Suppose that a load in the hand will cause an offset in the mass center of link #6
so that 26 # 0 and ?6 # 0 together with 7‘6 74 0. That is, the effective form of

the mass center vector 36 becomes:

Of course, the effective form of the ''pseudo inertia matrix" J6 becomes also

modified through the non-zero values of ;6 and '376:

F%('kzll"kzzz*k?m) 0 0 %4
0 3(k611 - K62z *X6s3) 0 Yo

J, = m
6 ° 0 0 %("211“‘222"‘233) 2
L X Ve Z, l.

To illustrate the effect of the non-zero values of ;6 and ?6 on the manipulator
dynamics, the necessary modifications for some of the dynamic coefficients are

evaluated in explicit form, and listed below.

JPL Technical Memorandum 33-669 C-1



1. Modifications in the gravity terms caused by ;6 #0, yo# 0

a) For joint #2:

The following terms should be added to D2 given by Eq. {(48)-
+gm, [;6(c92s64c95c66 - sezsesce6 + cezce4seb)
- ]
+ y6(-c92564c65396 + 562595396 + c62c94c96;J (C. 1)

b) For joint #4:

: The following terms should be added to D, given by Eq. (52):

wor

+gm, 0, [§6(ce4c95c96 - 86,56,)

R s T ST RO P T

e e e
¥
-

- }6(c64c05566 + s94c66)] (C.2)
IE ¢) For joint #5:
- The following terms should be added to D5 given by Eq. (54):
+gm6 [’?6°66('862894895 + cezces)
+ '376366(862864395 - cezces)] (C. 3)

d) For joint #6:
If ;6 and/or 76 are different from zero,then D, will also be different
from zero. Instead of Eq. (56), we will have now:

Dy = -gmg [%,(80,80,c0,48, +c0,80.80, - 80,c0,c0,)

+7,(80,80,c0,c0, +c0,80,c0, +80,c0,80,)] .4

It is noted that X, # 0 and Y # 0 cannot have any effect on D; and D,.
C-2 JPL Technical Memorandum 33-669




2. Modifications in the acceleration-related uncoupled terms caused
by x¢ # 0, yp # 0

The Dee and Dge dynamic coefficients given by Eqs. (68) and (66), respectively,
will remain unaffected by ;6 # 0 and/or ')76 # 0. Furthermore, Eé # v and/or

;;6 # 0 cannct have any effect on D33. Only D44, DZZ’ and D;1 will he modi-
fied due to X, # 0 and/or 7, # O,

a) Modification for D44:

W o YW

The following term should be added to D44 given by Eg. (64):
+2m6r6s95c95(x6c96 - y6596) (C. 5)

b) Modifications for D22 and D“:

LA AR

The following terms should be added to D22 given by Eq. (60):

+2m, {xé [r6se4305(c64596 +38,c0.c0) - (r co, + r3)sesse6]
+ ?6 [365596(r6c95 + r3) - r6364565(564c95596 - c64c96)] (C. 6)

The following terms should be added to D 11 given by Eq. (58):

+2m6x6 [rb(c92894395 +892c95) - r3362} (c02594c95c06 - 392965c66 +c02c94896;

+ (r6c94395 - rz) (c04’<:95c96 - 894'96)§
(C.7)

+2m6§6 t[r6(c92394305 + sezcas) + r3sez] (392395306 +c02c94c96 - c02594c05396)

+ (rz - r6c94395) (4:04c95c96 + '04(:06)}
It is noted that the number values of the k: 11’ kzzz. and k233 radius of gyration
terms will also be changed in the ''pseudo inertia matrix" when there is a load in
the hand. Of course, this change will not produce additional terms in the state
functions for the Dy; dynamic coefficients; it will only change the constant

JPL Technical Memorandum 33-669 C-3
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f

number values of the k?)ll’ kZZZ' and k233 parameters whenever they appear

in the state functions for the Dii dynamic coefficients, Eqs. (58), (60), (64),
(66), (68).T)

1) It is assumed here that the cross products in the 'pseudo inertia matrix'
J¢ will remain zero. If this is an unsatisfactory approximation, then addi-
tional terms will appear in the state functions for the Dy dynamical
coefficients.

JPL Technical Memorandum 33-669
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APPENDIX D

SIMPLIFICATION OF THE GENERAL MATRIX ALGORITHM FOR
MANIPULATOR DYNAMICS

The general algorithm for manipulator dynamics applied in Refs. 5 through 8,
and employed also in our analysis, is given by Eq. (1) in the main text of this
report. According to Eq. (1), the dynamic coefficients Dij and Dijk in the
general equations of manipulator motion are expressed in terms of the Trace
of the products of 4 by 4 matrices. Essential '"building blocks'" of the matrix
products are the first and second partial derivative matrices Uij and Uijk
defined by Eqs. (4) and (7) in the main text. The purpose of this Appendix is
to show that the application of the Uij and Uijk matrices in the complete form
as defined by Eqs. (4) and (7) is unnecessary in the computation of the

acceleration- and velocity-related dynamic coefficients Dij and Dijk'

Statement:

All link coordinate transformation matrices T(l), T‘i’, ... which

have upper index number smaller than the smallest upper index

number (say "i"') of a derivative matrix QT;_ can be omitted

from the Trace of matrix products corresponding to the defini-

tions of the Dii and Dijk dynamic coefficients given by the matrix

algorithm of Eq. (1).

For instance, according to the Statemernt, the D55 inertial term and the D4 56
Coriolis term can be computed using ‘he following simplified formula:

T
) 1.2.3.4 .5 12,34
Dgg = Tr [ToTxTsz QT, Jg (T0T1T2T3 QT4) ]

g, S’ e, S’

omit! omit!
T

1.2.3. 4 56(1234 56]

+ Tr [T0T1T2T3 QT4T5.76 TOTITZT3 QT4T5)
ume, S’
omit! omit!
JPL Technical Memorandum 33-669 D-1
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3

B T
3 _ 1.2.3 _4 5 6 1..2..3 4_5 b\)
D4,56 = Tr [TOTITZ T3QT4QT5 J6 (TOTITZ QT3T4T5 ]
et o . ——
omit! omit!

As seen in the two examples quoted above, the introduced simplification reduces
the computational complexity substantially. In the case of D55, the original
formula calls for the evaluation of the Trace of the product of 13 and 15
matrices, while the introduced simplified formula calls for the evaluation of the
Trace of the product of 5 and 7 matrices only. Ia the case of D4’ 56 the
original formula requires the computation of the Trace of the product of

16 matrices, while the proposed simplified fcrmula requires the computation

of the Trace of the product of 10 matrices oaly, (It is recalled that all matrices

are 4 by 4 matrices.)

The validity of the introduced simplification of the algorithmic formulas for the
Dij and Dijk dynamic coefficients for any manipulator can be shown vy general
matrix manipulations elaborated briefly below. The essence of the proof is

to show that the effect of the link coordinate transformation matrices omitted
from the Trace of matrix products is equivalent to the effect of the identity
matrix in the chain-product of matrices. To make the proof concise, two
lemmas will be stated which are related to the properties of the general 4 by 4

link coordinate transformation matrix T; 1}

r 1

cO, -ca, 80, sa,s0, a.cO,

1 1 1 1 1 1 1

. 80, ca,cO, -sa,cO, a.s0,

i N i i i i i (D. 1)

i-1 0 sa, ca, r,
i i i
LO 0 0 1

Lemma 1: The general structure of the product

T T
ik & [k V... [y i ...k
R = (Tk-l) (Ti-l) Tion " Tea

for any "i" and "k'" is as follows:

D-2 JPL Technical Memorandum 33-669
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_
1 0 0 : R14
11
e 0 1 0 Ry 11, 12
R = . . 1 :Rik = ~TT-;---- (D. 2)
---------- L34 1z | T2z
R1k Rik Rik ! Rik '
14 24 34 | 44
> where the T submatrix is always the 3 by 3 identity matrix and r), = r'lrz.
?f (That is, RiK is a symmetric 4 by 4 matrix.) Lemma 1 can be proved by
direct multiplication and induction.
, Lemma 2: The general structure of the product
" ik & i k
§ BY =T Tk
{
,‘.t for any "i" and "k' is as follows:
| : 7
ik ik ik ! Lik
By Bz Bz | By
'
ik ik ik 1 ik
. Ba1 Bz Bay v By Pt P2
ik | |
B = ) | =y~ - (D.3)
ik ik ile ' Lik |
B3y B3z  Bsy | By 0 !
- - e - e = e - e e = l- - - -
0 0 0 1

that is, the l:;21 submatrix is always za2ro, and b22 is always equal to 1,
Lemma 2 can be proved by direct multiplication and induction.

Let the following partitioning be introduced for a symmetric matrix P, a
skew-symmetric matrix Q, and an elementary matrix (o]

JPL Technical Memorandum 33-669 D-3
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P Pz Pz 0 Py

' r
Pio P Py | Py Py1 ! Ppp

P = I = ~ e =d e - (D.4)

Pi3 P Py3 ) Py P12 | P22
------------ b o = =

|
Pia Py FP3q 1 Py

B .
o -1 0 : 0
: '
| 1 0 0,0 9 , 0
‘ Q = ' = - -l- - (D.5)
- 0.0 Ll o i o
FER i
§ | O 0 0+ 0
P T
; - where CIRY is a skew-symmetric 3 by 3 submatrix, 9y; = - 9y (It is
,':}; e obvious that QT = - Q.) Further,
T e 0 0 0 : 0
. eV : ) -
© o0 0,0 0 1 9
e g - ; S (D. 6)
o R o | o
0 0 0,0

where El 2 is an elementary 3 by 1 submatrix. It is noted that the Q and Q are
the differential operator matrices related to rotary and linear joints, respec-
tively, while the symmetric P matrix is simply identical to the symmetric
pseudo inertia matrix Jk (see Eq. (10)), or it is constructed as P = Bika(Bik)
where Bik is given by Eq. (D.3),

T

The following rules related to the Trace operator are recalled:

Tr(C) = Tr(C)T (D.T)

D-4 JPL Technical Memorandum 33-669
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for a square matrix C, and
Tr(ABC) = Tr(BCA) = Tr(CAB) (D. 8)

if A is of order (m X k), B of order (k X r) and C of order (r X m). Of course,
if we define, for instance, BC é D,then we also have: Tr{AD) = Tr(DA).

Using the properties and rules stated by Eqs. (D.2) through (D. 8), the validity
of the introduced simplification of the algorithmic formulas for the Di' and Dijk
dynamic coefficients for any manipulator can be proved through the foliowing

steps:

1. Rearrangement of the chain product of the 4 by 4 matrices under
the Trace operator so that the 17{ik matrix product group will be
isolated., (It is noted that for Rik i=landk=j-1, jbeing the
lowest index number for a derivative matrix which appears in the

general fcrinula.)

2. Then, the matrices under the Trace operator are arranged in a
form Tr(PM) where M is a chain product of matrices containing

also the Rik matrix.

3. Finally, the elements of the M matrix are determined by direct
multiplication in a partitioned form similar to the partitioning
introduced in Eqs. (D.2) through (D, 6) for the Rik, Bik. P, Q,
and Q matrices. This last step then reveals that the four sut-

matrices of M

M ; ™2
M= f---eden--
M2, ™22

will only contain the submatrix r 22
submatrices of Rik will not appear in the four submatrices of
M. Since the remaining ™ submatrix is the identity matrix,
it (or equivalently, the RIK matrix) can be omitted from the

M matrix. That proves the validity of the algorithmic simplifi-
cations for Dﬁ and Dijk stated in this Appendix.

1’ that is, the 2 and r

JPL Technical Memorandum 33-669 D-.5
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The three major steps of proof for the algorithmic sirnplification of the Dij
and Dijk dynamic coefficients are compiled in the subsequent pages for
different combinations of rotary and linear joints. The derived formulas
reveal the nature of the introduced algorithmic simplifications in detail and
immediately show some interesting structural and symmetry relations for the

different dynamic coefficients,

A, Acceleration-Related Dynamic Coefficients
I. Diagonal Coefficients, Dii
a. Rotary joints.

t

The general component of Di‘. takes the following form after rearrangement:

Tr(RQBPBTQT) = Tr(BTQTRQB)

S
M
Direct multiplication results
omit
- / \\ -
T T CT T
ninfmntn | Pnntntne
M= [ccocoeanann 4o seeaaaaaan (D. 9)
|
T T T T
P29 nmbn | Przdntnnbie
1y -l
omit
Consequently,
T:(PBTQTROB) «» Tr(PBTQTQB) (D. 10)

Tror clarity in writing, the superscripts are omitted from the R and B
matrices.

JPL Technical Memorandum 33-669




b) Linear joints,

Rearrangement yields for the general term:

Tr(RGBPBTGY) = Tr(PBTQIROB)

A’
M
Direct multiplication results:
: : )
. : 0, 0 0 . O-I
: M= |- =|- .- {D.11)
i v =T - i
: ‘ 0, 9)2 119, 0,1
i s
!
omit
=
Cnnsequently,
L) T:(PBTGTKEB) < Tr(PBTRTEB) = TrPM) - p,, (D. 12)
'“ ,:, ‘_ ' where Py, is simply the mass of a link.
gy 2. Off-Diagonsl Coetficients D

a) Two rotary joints.

Rearrangement yields for the general term:

Tr(RQBPQ'BY) = Tr(PQTBTRQB)
S’

M

R o 4

JPL Techaical Memorandum 33-669 D-7
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Direct multiplication results:

/omit
rT T/ T\\ b ]

|
U1P11 %1% ! P F 92
M= | -ceea. R (D. 13)
0 ! 0
Consequently,
Tr(PQTBTRQB) « TrPQTBTQB) (D. 14)

The symmetry Dij = Dji is easily seen since

trPQTBTaB) = TrPBTaTBQ)

b) One linear and one rotary joint,

Rearrangement yields for the general term:

Tr(RGBPQTBT) = Tr(PQ' B RQB)

e s’
M
Direct multiplication results:
omit
[~ . - = -
b T, TV = )
0 ! M1t 11%2 o, ™
M= | coececccacls | eepens (D. 15)
)
. [
L_0 ' 0 _ b0 ' 0 i

JPL Technical Memorandum 33-669
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Consequently,
Tr(PQ” B'RGB) < Tr(PQ'BTOR) = p], m , (D. 16)
. T . _ . . . .
Since Py, M, is 2 scalar, the symmetry Dij = Dji in this case is obvious.

c) Two linear joints.

Rearrangement yields for the general term:

Tr(RABPQ'BT) = Tr(PQ . BTR3B)

R

M

Direct multiplication results:

0! 0 o' o

' ‘

M: -r ------- - -r--- (Dol?)
| !
~T.T -

O laPuindz| |01 ™22

omit

Consequently,
T+(PQ 'BTRGB) <« Tr(EA'BTEB) = p,, m,, (D. 18)
Since Py, M,, is a scalar, the symmetry D‘.j = Dji in this case is also
obvious.
JPL Technical Memorandum 33-669 D-9
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B. Velocity-Related Dynamic Coefficients

1. Centripetal terms

a) Rotary joints.

aa) Di Kk’ i < k: Centripetal effect of the outer joints felt at the inner

rotary joints.

Rearrangement yields for the general term:

Tr(RBQQPB'QT) = Tr(PBTQTRBQQ)

m— tnuner’
M
Direct multiplication results:
_ omit _
b'lrlq'lrlrllbllqllqll y O
Mz |ocemmmmmmm oo L. - (D. 19)
_bTZq'lrlrllbllqllqll ; 0_
omit
Consequently,
Tr(PBTQTRBQQ) <« Tr(PBTQTBQQ) (D. 20)

bb) Di Kk’ i > k: Centripetal effect of the inner joints felt at the outer
»

rotary joints.

Rearrangement yields for the general term:

Tr(RQQBPQTBT) = Tr(PQTBTRQQB)
N, gy’

M

D-10 JPL Technical Memorandum 33-669
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Direct inultiplication results:

omit omit
T T T ]
9P 11919 ) Pt 92
M= | == - mmmmm o] L. (D. 21)
|
0 ! 0
Consequently,
Tr(PQ BTRQQB) <= TrPQTBTQOBR) (D. 22)
b) Linear-rotary joint pairs,

aa) Di Kk’ i < k: Centripetal effect of the outer rotary joints felt at the

inner linear joints.

Rearrangement yields for the general term:

Tr(RBQQPBTRY) = Tr@BTaTRBQQ)

p
M
Direct multiplication results:
0 I o
{
M = 4 e e.em.= . - = :. - -
U211 ° _J
omit

Consequently,

Tr(PBTOTRBQQ) <> Tr(F31BQQ)

JPL Technical Memorandum 33-669

(D.23)

(D. 24)

D-11

4

TERIE R SEING M 1 W P

s+



W Mgy e

DY S

TRT Y, CRCURIC M i .

P——

bb) Di Kk’ i > k: Centripetal effect of the inner rotary joints felt at the

outer linear joints.

v o s s e

Rearrangement yields for the general term:

Tr(RQQBPﬁTBT) = Tr(PBTBTRQQB)

o agaptn, S’
M |
i
Direct multiplication results:
— | -
0 ' 0
i
M= [« cmcmmcmemm - e e e e e m e - (D. 25)
-T,T ‘' =T7,T
quzbnruqllqnbu C 9128119191112 | ,
omit omit f
Consequently, !
Tr(PQ ' BTRQQB) <> Tr(PQ B QQB) (D. 26)
c) Remarks,
aa) iii Z 0 is physically obvious. But it can easily be seen also from the
matrices as follows. |
Rearrangement yields for the general term: ; o
-
T T
Tr(RQQPQ ") = Tr(PQ RQQ)
g
M
Direct multiplication results:
omit
T r/ Gy19yy ' O q I o
M 11%1%; 1
M= .----.--:-- = - o odae =Q
0 R o | o
D-12 JPL Technical Memorandum 33-669
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Consequently,
Tr(PM) = Tr(PQ) 20

since P is a symmetric matrix and Q is a skew-symmetric matrix.
(The Trace of the product of a symmetric and a skew-symmetric

matrix is identically zero.)

bb) The close relationship between Eqgs. (D.22) and (D.14) - that is between
Di' for two rotary joints and Di Kk for i > k rotary joints - is noteworthy.
, L

For these two types of dynamical coefficients the final expressions

become:
T T T T,T

for D,.: Trlp11911P11911°10) * P12911P1191P12
T.T T T.T

for D, it Tr(P119332119519 1011 1 P12911P11911911P12

2. Coriolis terms

The Coriolis terms are characterized by three indices separated into two
groups: i, kj with k # j but i can be equal to k or j. (k and j are interchange-
able.) The values of i, kj allow several combinations: i < k, j with k < j;
kc<i, jwithi< j; k<1, jwithi >j;i =k withi< j; i=k withi > j. Further,
both linear and rotary joints can be associated with the three i, kj indices.
Thus, the index values together with the associated joint types result in a num-

ber of cases to be considered,

a) Di,kj' i<k,jand k< j

i 13 .y
1) Three rotary joints (e.g DZ, 46)
Rearrangement of the general term yields:

rr(Pe+TQTRBQE*q)!
N ——

M

THere and in the subsequent pages, the B and B¥ matrices have identical struc-
ture as specified by Eq. (D.3), but their elements (that is, their omitted upper

indices) are different.

i 4o

I e S e g e AT M O
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Direct multiplication resulis:

omit
[ uT T T ]
P11 Pt P91 1% 0
M= | -~ "2-=====m22%==2~=2=_-- P - (D.27)
1
T T T T T sk |
b3 v
(Plz 11911 +'blzq11) T11P11911P 1191 | 0
- -
cmit
Consequently,
Tr(PB* BTQTRBQB*Q) <> Tr(PB* BlQlBQB*Q) (D. 28)
2) One linear and two rotary joints.

aa) 1iis linear, k and j are rotary joints. (e.g., D3 45)

Rearrangement of the general term yields:

Tr(PB* B 'Q 'RBQB*Q)
\_’\~
M

Direct multiplication results:

i 0 ' o ]

M=z | ~o-ccemmonann F- - (D. 29)
-T * '
L a2inPnaPna ) ¢
omit
Consequently,
Tr(F*TBTGTRBQB*Q) < Tr(P &’ BQB*Q) (D.30)
D-14 JPL Technical Memorandum 33-669
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bb)

cc)

3)

i and k rotary joints, j linear joint.

Rearrangement yields for the general term:

Tr(PB*TBTQTRBQBﬂ{))
S V —
M
Direct multiplication results:
omit
! T T T * =
b
0 by b 19111 P11 NP9 2
M= [=9-ccemasemmmm e m e m - (D. 31)
|
:kT T T
01 by B9y b1y AT TLIT LI LT
omit
Consequently,
Tr(PB* BTQTRBQB*Q) = Tr(PB* B Q’BQB*Q) (D.32)

i and j rotary joints, k linear joint. (e.g., D2 34)

The general term is:
zero

e N
Tr(PB* ' BTQTRBAB*Q) £ 0

since QB* = Q and QQ = 0.

One rotary and two linear joints.

Only one combination can be different from zero:

k is rotary while i and j are linear joints.
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Rearrangement yields for the general term:

Tr(PB*TBTGTRBQB*ﬁ)

M

Direct multiplication results:

0 | 0
}
M= | cckoeoeeceeceann-- (D. 33)
]
-~T P
0 9 'Pn%1P11%2
L J
omit
Consequently,
Tr(PB*TBTﬁTRBQB*G) = Tr(PGTBQB*E) (D.34)

The other possible two linear and one rotary joint combinations yield
identically zero Coriolis terms since both QBQ and QBQ are zero
matrices.

D; iy k<1ijandicj

Three rotary joints (e.g., D4,26)

Rearrangement yields for the general term:

Tr(PQ T B* ' BTQ RBQB¥) -
N m———— o — o
M a ot
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TG VY XM, & W

Direct multiplication results:

omit :
i / j i ;
T *T T T % ! T *T T T * '
PP P T TP 9P ! P P T P9 b
M=|-ncmeiea e ae o R T I (D.35)
L 0 : 0 A
Consequently,
TrPQTB*TBTQTRBQB*) <« TrPaTnxT8TQTBQB*) (D. 36)
2) One linear and two rotary joints.
aa) 1iis linear, k and j are rotary joints (e.g., D3 24)
i , ‘ Rearrangement of the general term yieclds: :
o |
| Tr(PQTB* ' BTQ TRBGB*) ;
] §
N— o — [
| JANEN 2
: M ‘:
5’ " ?
Direct multiplication results: ;
omit ,
l T,xT,.T T -
° v apPnPna it
M=| oo ceee-- (D.37)
] .
L0 0 .
Consequently,
Tr(PQTB* TBTQTREGAB*) @ Tr(PQTB+TBTQTER) (D. 38)
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bb)

cc)

3)
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i and k rotary joints, j linear joint.

Rearrangement yields for the general term

Tr(PQ BB QTRBQB*)

Direct multiplication results:

r- 0 : 0 T
Y P I e LR (D. 39)
1271 P11911 7110119 P : EROL LT
\omit//
Consequently,
Tr(PG B* I BTQTRBQB*) <> Tr(PQ B* B QlBQB*) (D. 40)

i and j rotary joints, k linear joint (e.g., D4 3‘,‘_.’)

The general term is now:

Tr(PQ B* T BT3TRBQB*) = Tr[P(QBB*Q)TRBQB*]E 0

zero

since QBB* = Q and QQ = 0

One rotary on two linear joints.

Again, only one combination can be different from zero: k is rotary
while i and j are linear joints.

Rearrangement yields for the general term:
Tr(PQ B* 1 B1Q TRBQB*)

Nt ————
M
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Direct multiplication results:

0 0

|
M= | = s mm e e e e e s (D.41)

| ,

T . T, T T -
LO oappbyy ke T P9,
omit
. Consequently,

Tr(PGTB*TBTQIRB'dB*) = Tr(PGTB*TBTQTB'd) (D. 42)

Again, *he otler possible two linear and one rotary joint combinations

yield identically zero Coriolis terms since both QBQ and QBQ are
zero matrices,

o ——— s g < i
v
IR I NS S NI o o e o gt iy 0

c) Di,kj’ k<i, j andi >j,

1) Jhree rotary joints (e.g., Db, 24)

Rearrangement yields for the general term:

Tr(PQTB* I BTRQBQB*)
N, —

M

Direct multiplication results:
mit

(o]
T T )

*
Gbn b bt VP P 9 tnanti.

R R e X

L 0 ' 0
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Consequently,
Tr(PQ B+ BTRQBQB*) <> Tr(PQ B*!BIQBQB*) (D. 44)
2) One linear and two rotary joints.
aa) iis linear, k and j are rotary joints.

Rearrangement yields for the general term:

_' : Tr(PQ B+ BTRQBQB*)
o NV
f Direct multiplication results:
4
4 . - 0 | 0 -
M= ~cccemeeeee e dome e e meeaea.a- (D. 45)
CHCELRENTRURE IS ! CHCTLEENTRLRC
Consequently,
Tr(PQTB*TBTRQBQB*) ¢ Tr(FQ B+ BTQBQB*) (D. 46)
bb) 1 and k rotary joints, j linear joint. (e.g., D4.'23) } ‘
Rearrangement yields for the general term: -
Tr(PQ " B+ TBTRQBAB*) 'f;:
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Direct multiplication results:

omit
-
) T, ,*T T -
C 9 PPt %2
M = e (D.47)
1
LO | 0
Consequently,
Tr(PQ B* T BTRQBOB*) <« TrPQTB*IBTQRA) (D. 48)
cc) i andj rotary joints, k linear joint (e.g., D5 34)

The general term is now

T

Tr(PQ I B* 1B TROBQE*) = 0
N -

- - - zero :
since QB = Q and QQ = 0. '

3) One rotary and two linear joints.

Again, only one combination can be different from zero: k is rotary
while i and j are linear joints.

Rearrangement yields for the general term:

Tr(PG B+ TBTRQBOB*)
N ———
M

Direct multiplication results:

0 0 g
Y I (D. 49)
v =T 4T, T -
0, 950 0),1719,%,9)2

|

omit
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Consequently,
Tr(PﬁTB*TBTRQBC-)B*) = Tr(PGTB*TBTQB?)) (D, 50)
Remark

Recalling that QT = - Q, and comparing Eq. (D,36) to Eq. (D.44), Eq. (D.38) to
Eq. (D.48), Eq. (D.40) to Eq. (D.46), and Eq. (D.42) to Eq. (D, 50) it is

seen from the right hand side of the respective equivalence expressions that

! : Eq. (D.36) = - Eq. (D.44)
- Eq. (D.38) = - Eq. (D.48)
i F Eq. (D.40) = - Eq. (D.46)
~ Eq. (D.42) = - Eq. (D.50)
J

o

H That is, we have in general:
i &
Di,kj = - Dj,ki fork<i,j) (D.51)

d) Di.ij withi < j

1) Three rotary joints (e.g., Dz'24) : |

Rearrangement yields for the general term:

Tr(PBTQTRQBQ) -
g’ Ji'!
M Ef

Direct multiplication resuits:

omit

nMi na’ni

bT T b 1 o . a; i ;‘*;;‘

Mx [ececmmcanns Ao (D. 52) L
|

|

bl.qT b 0

12911 1M1° 1M

t
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2)

e)

1)

Consequently,

Tr(PBTQTRQBO) = Tr(PBlaToBQ) (D. :

U1
(O3]
~

One linear and two rotary joints {e.g.,

DZ, 23)
The Coriolis term can only be different from zero if j is the linear
joint.

Rearrangement of the general term yields:

Tr(PB1Q TRQBJ)
et e’
M

Direct multiplication results:

omit
b?lqurlr‘nqn 11912
M= | = -ccecnuecoeceonaoan- . (D.54)

1
b

T T —
b12951%1191°119) -

omit
Consequently,
Tr(PB'Q RQBJ) <> Tr(PBTQTQBA) (D, 55)
D, .. withi >

i, ij

Three rotary joints (e.g., DS, 52)

Rearrangement of the general term yields:

Tr(PQTBTRQBQ)
WJ
M

JPL Technical Memorandum 33-669 D-23
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Direct multiplication results

omit
T.T 1 ‘
9111119110119 : 0
M= | & c &0 -0 422 - LIPS (D. 56)
{
L. 0 L0
Consequently,

s

Tr(PQTBTRQBQ) < TrPeTBTQBQ) Tr[BQPﬂKnTQ]EO

§ N’
- k
: = K (D. 57)
P
i 3
{ !
. { Since K is a symmetric matrix while Q is a skew-symmetric matrix,
Z 4 and the Trace of the product of asymmetric and skew-symmetric
g ] ' matrix is identically zero.
Pl
!i B 2) One linear and two rotary joints (e.g., D3 32)
1. ,
i LT ' Due to the assumption that i > j, j must be the rotary joint.
g - (Otherwise we would have OBQ = 0 automatically.)
i‘. L Rearrangement of the gene ral term yields:

Tr(PQ B TRQBEG)
W
M

Direct multiplication results:

Mz [octcenmann - ee (D. 58)

' —T.T -
N P LTI PLIPLIPCIP

-d

omit
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Consequently,

Tr(PﬁTBTRQBé) — Tr(PéTBTQBQ) = Tr [BQP(B(S)T Q] 20 (D.59)

S

since the Trace of the product of a symmetric matrix (K) and a

skew-symmetric matrix (Q) is identically zero.

’

Thus, the Coriolis term Di ij with i > j is identically zero in all cases.

M~

AT ver
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